Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New design strategy can help improve layered superconducting materials

14.10.2019

Modified multi-layered bismuth superconductor for higher critical temperatures

Scientists from Tokyo Metropolitan University have created a new layered superconducting material with a conducting layer made of bismuth, silver, tin, sulfur and selenium.


(a) Crystalline structure of the newly created superconductor. It has four sublayers in the conducting layer. This is in contrast to (b) and (c) which only have 1 and 2 layers respectively. The newly developed structure allows more customization to tune its superconducting properties.

Credit: Tokyo Metropolitan University

The conducting layer features four distinct sublayers; by introducing more elements, they were able to achieve unparalleled customizability and a higher "critical temperature" below which superconductivity is observed, a key objective of superconductor research. Their design strategy may be applied to engineer new and improved superconducting materials.

Once an academic curiosity, superconductors are now at the cutting edge of real technological innovations. Superconducting magnets are seen in everyday MRI machines, particle accelerators for medical treatments, not to mention the new Chuo Shinkansen maglev train connecting Tokyo to Nagoya currently being built.

Recently, a whole new class of "layered" superconducting structures have been studied, consisting of alternate layers of superconducting and insulating two-dimensional crystalline layers. In particular, the customizability of the system has garnered particular interest in light of its potential to create ultra-efficient thermoelectric devices and a whole new class of "high temperature" superconducting materials.

A team led by Associate Professor Yoshikazu Mizuguchi from Tokyo Metropolitan University recently created a bismuth sulfide based layered superconductor; their work has already revealed novel thermoelectric properties and an elevated "critical temperature" below which superconductivity is observed. Now, working with a team from the University of Yamanashi, they have taken a multi-layered version of the system, where the conducting layer consists of four atomic layers, and begun swapping out small proportions of different atomic species to probe how the material changes.

Starting with a conducting layer made of bismuth, silver and sulfur, they tried substituting some of the silver for tin. By varying the amount of silver, they were able to raise the critical temperature from 0.5K to above 2.0K. Interestingly, they found that this was accompanied by the disappearance of an anomaly in its resistivity at significantly higher temperatures.

Though the reason behind this is not yet understood, it is clear that the addition of tin has significantly modified the electronic structure of the material. Furthermore, they took their best bismuth, silver, sulfur and tin combination and substituted some of the sulfur for selenium, a modification known to improve superconducting properties in their original bismuth sulfide material.

Not only did they raise the critical temperature further to 3.0K, they found that the response to magnetic fields showed signatures of "bulk" superconductivity, providing clear proof that they could in fact access both the advantages of reduced dimensionality and bulk materials.

By changing the composition and number of layers, the team believe they are on the verge of achieving bottom-up engineering of new, tailored bismuth sulfide based superconducting materials.

###

This work was supported by JSPS KAKENHI Grant Nos. 15H05886, 15H05884. 16H04493. 17K19058, 16K05454 and 15H03693, and a Tokyo Metropolitan Government Advanced Research Grant, Number (H31-1).

Media Contact

Go Totsukawa
totsukawa-go@jmj.tmu.ac.jp
81-426-772-728

 @TMU_PR

https://www.tmu.ac.jp/english/ 

Go Totsukawa | EurekAlert!
Further information:
https://doi.org/10.1038/s41598-019-49934-z
http://dx.doi.org/10.1038/s41598-019-49934-z

More articles from Materials Sciences:

nachricht First detailed electronic study of new nickelate superconductor finds 3D metallic state
22.01.2020 | DOE/SLAC National Accelerator Laboratory

nachricht A new look at 'strange metals'
21.01.2020 | Vienna University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>