Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New composite advances lignin as a renewable 3D printing material

20.12.2018

Scientists at the Department of Energy's Oak Ridge National Laboratory have created a recipe for a renewable 3D printing feedstock that could spur a profitable new use for an intractable biorefinery byproduct: lignin.

The discovery, detailed in Science Advances, expands ORNL's achievements in lowering the cost of bioproducts by creating novel uses for lignin--the material left over from the processing of biomass.


Using as much as 50 percent lignin by weight, a new composite material created at ORNL is well suited for use in 3D printing.

Credit: Oak Ridge National Laboratory


ORNL scientists have created a new composite material for additive manufacturing that makes use of lignin, a biofuels byproduct.

Credit: Oak Ridge National Laboratory.

Lignin gives plants rigidity and also makes biomass resistant to being broken down into useful products.

"Finding new uses for lignin can improve the economics of the entire biorefining process," said ORNL project lead Amit Naskar.

Researchers combined a melt-stable hardwood lignin with conventional plastic, a low-melting nylon, and carbon fiber to create a composite with just the right characteristics for extrusion and weld strength between layers during the printing process, as well as excellent mechanical properties.

The work is tricky. Lignin chars easily; unlike workhorse composites like acrylonitrile-butadiene-styrene (ABS) that are made of petroleum-based thermoplastics, lignin can only be heated to a certain temperature for softening and extrusion from a 3D-printing nozzle. Prolonged exposure to heat dramatically increases its viscosity--it becomes too thick to be extruded easily.

But when researchers combined lignin with nylon, they found a surprising result: the composite's room temperature stiffness increased while its melt viscosity decreased. The lignin-nylon material had tensile strength similar to nylon alone and lower viscosity, in fact, than conventional ABS or high impact polystyrene.

The scientists conducted neutron scattering at the High Flux Isotope Reactor and used advanced microscopy at the Center for Nanophase Materials Science--both DOE Office of Science User Facilities at ORNL--to explore the composite's molecular structure.

They found that the combination of lignin and nylon "appeared to have almost a lubrication or plasticizing effect on the composite," noted Naskar.

"Structural characteristics of lignin are critical to enhance 3D printability of the materials," said ORNL's Ngoc Nguyen who collaborated on the project.

Scientists were also able to mix in a higher percentage of lignin--40 to 50 percent by weight--a new achievement in the quest for a lignin-based printing material. ORNL scientists then added 4 to 16 percent carbon fiber into the mix. The new composite heats up more easily, flows faster for speedier printing, and results in a stronger product.

"ORNL's world-class capabilities in materials characterization and synthesis are essential to the challenge of transforming byproducts like lignin into coproducts, generating potential new revenue streams for industry and creating novel renewable composites for advanced manufacturing," said Moe Khaleel, associate laboratory director for Energy and Environmental Sciences.

###

The lignin-nylon composite is patent-pending and work is ongoing to refine the material and find other ways to process it. The ORNL research team also included Sietske Barnes, Christopher Bowland, Kelly Meek, Kenneth Littrell and Jong Keum. The research was funded by DOE's Office of Energy Efficiency and Renewable Energy's Bioenergy Technologies Office.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov.

Media Contact

Kim Askey
askeyka@ornl.gov
865-576-2841

 @ORNL

http://www.ornl.gov 

Kim Askey | EurekAlert!

More articles from Materials Sciences:

nachricht Additive manufacturing reflects fundamental metallurgical principles to create materials
18.01.2019 | University of Sheffield

nachricht Brilliant glow of paint-on semiconductors comes from ornate quantum physics
17.01.2019 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>