Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New capabilities at NSLS-II set to advance materials science

18.04.2018

The Hard X-ray Nanoprobe at Brookhaven Lab's National Synchrotron Light Source II now offers a combination of world-leading spatial resolution and multimodal imaging

By channeling the intensity of x-rays, synchrotron light sources can reveal the atomic structures of countless materials. Researchers from around the world come to the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory--to study everything from proteins to fuel cells. NSLS-II's ultra-bright x-rays and suite of state-of-the-art characterization tools make the facility one of the most advanced synchrotron light sources in the world. Now, NSLS-II has enhanced those capabilities even further.


A close-up view of the Hard X-ray Nanoprobe -- beamline 3-ID at NSLS-II.

Credit: Brookhaven National Laboratory

Usage Restrictions: OK to use with stories about this research.

Scientists at NSLS-II's Hard X-ray Nanoprobe (HXN) beamline, an experimental station designed to offer world-leading resolution for x-ray imaging, have demonstrated the beamline's ability to observe materials down to 10 nanometers--about one ten-thousandth the diameter of a human hair. This exceptionally high spatial resolution will enable scientists to "see" single molecules. Moreover, HXN can now combine its high spatial resolution with multimodal scanning--the ability to simultaneously capture multiple images of different material properties. The achievement is described in the Mar. 19 issue of Nano Futures.

"It took many years of hard work and collaboration to develop an x-ray microscopy beamline with such high spatial resolution," said Hanfei Yan, the lead author of the paper and a scientist at HXN. "In order to realize this ambitious goal, we needed to address many technical challenges, such as reducing environmental vibrations, developing effective characterization methods, and perfecting the optics."

A key component for the success of this project was developing a special focusing optic called a multilayer Laue lens (MLL)--a one-dimensional artificial crystal that is engineered to bend x-rays toward a single point.

"Precisely developing the MLL optics to satisfy the requirements for real scientific applications took nearly 10 years," said Nathalie Bouet, who leads the lab at NSLS-II where the MLLs were fabricated. "Now, we are proud to deliver these lenses for user science."

Combining multimodal and high resolution imaging is unique, and makes NSLS-II the first facility to offer this capability in the hard x-ray energy range to visiting scientists. The achievement will present a broad range of applications. In their recent paper, scientists at NSLS-II worked with the University of Connecticut and Clemson University to study a ceramic-based membrane for energy conversion application. Using the new capabilities at HXN, the group was able to image an emerging material phase that dictates the membrane's performance.

"We are also collaborating with researchers from industry to academia to investigate strain in nanoelectronics, local defects in self-assembled 3D superlattices, and the chemical composition variations of nanocatalysts," Yan said. "The achievement opens up exciting opportunities in many areas of science."

As the new capabilities are put to use, there is an ongoing effort at HXN to continue improving the beamline's spatial resolution and adding new capabilities.

"Our ultimate goal is to achieve single digit resolution in 3D for imaging the elemental, chemical, and structural makeup of materials in real-time," Yan said.

###

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

Media Contact

Stephanie Kossman
skossman@bnl.gov
631-344-8671

 @brookhavenlab

http://www.bnl.gov 

Stephanie Kossman | EurekAlert!

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
21.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>