Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm calculates average distance travelled by low-speed electrons

12.09.2014

Japanese researchers have achieved high accuracy in the measurement and analysis of nanosurface materials.

A research team consisting of postdoctoral researcher Da Bo, former postdoctoral researcher Hiroshi Shinotsuka, group leader Hideki Yoshikawa and special researcher Shigeo Tanuma, Surface Chemical Analysis Group, Nano Characterization Unit, NIMS (Sukekatsu Ushioda, president); and professor Ding Zejun, University of Science and Technology of China, has developed a theoretical algorithm to accurately calculate the average distance traveled by low-energy/low-speed electrons without any energy loss that are sensitive to the surface structures of materials through which they travel while retaining their energy information.


Inelastic mean free path (IMFP) of copper in relation to electron energy. Theoretical prediction using conventional algorithm (red band), theoretical prediction using newly developed algorithm (red solid line), and experimental data with improved accuracy.

Copyright : National Institute for Materials Science (NIMS)

This information on the average traveling distance is vital in terms of measuring the amount of electrons released from materials and gaining information about the depth at which surface analysis is conducted.

The nanometre-scale surface layers and interface layers influence the properties of various materials such as catalysts, batteries, semiconductors, sensors and anticorrosion materials. It is imperative to identify the amount of elements present and chemical bonding state in these layers in terms of improving the performance of functional materials and developing new materials.

And to achieve this, it is essential to accurately analyze and measure electrons (bonding electrons) that indicate the state of elements present in the surface and interface layers. This procedure involves measurement of bonding electron energy extracted from materials due to external stimuli applied to them in such forms as X-rays and electrons, and of the intensity distribution of that energy. During this process, it is critical to identify the depth from the surface at which these measurements were taken.

The range of the measurement depth can be determined by measuring a physical quantity called the inelastic mean free path (IMFP), which defines how far an electron can travel in a material while retaining its original energy level in a statistical sense. Experimental and theoretical attempts to quantify IMFP have been pursued globally since the 1970s. However, since it is difficult to take measurements on low-speed electrons that are sensitive to the surface structure (especially at 200eV or below), this quantification had been an issue for a long time.

In theory, accurate calculation of IMFP in a material is feasible provided that the energy loss function of that material is fully known. The energy loss function represents the level of interaction between the material and electromagnetic waves, and is expressed in terms of the change in the amount of energy lost from electrons and the change in momentum due to corresponding scattering events occurring in the material.

The conventional model function (so-called optical energy loss function) only enabled calculating a partial energy loss function under limited conditions assuming zero-momentum, however, lacking of the accompanied changing in momentum as electrons lose energy. As such, this is an incomplete energy loss function in view of obtaining IMFP. The conventional function was particularly problematic when that or similar functions were applied to low-speed electrons that are sensitive to the surface structure.

To overcome this problem, we described the optical energy loss function in terms of a composite function resulting from combining many functions, and also used a new model function that accurately expresses the change in momentum. With this method, we succeeded in determining a nearly complete energy loss function.

This calculation method enabled us to more accurately perform theoretical prediction of IMFP compared to the experimental value, which was obtained by applying spectrometry (extended X‐ray absorption fine structure spectrometry) to low-speed electrons of Copper and molybdenum at the high-brilliant synchrotron radiation facility, and to explain the relationship between energy measurement and the types of materials. Through this endeavor, we found a hint to solve this long-lasting problem.

Based on this research, more accurate quantification of elements and analysis of chemical bonding states have become feasible in the several atom thick surface layer of materials using electrons. The results of this study have been published in Physical Review Letters Vol.113 (2014) 063201. DOI: 10.1103/PhysRevLett.113.063201.

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Scientists demonstrate a new experiment in the search for theorized 'neutrinoless' process

13.07.2020 | Physics and Astronomy

Extraordinary regeneration of neurons in zebrafish

13.07.2020 | Life Sciences

Wanted: The best Storage Battery

13.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>