Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons provide insights into increased performance for hybrid perovskite solar cells

24.04.2018

Neutron scattering has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with increased efficiency.

The multi-institutional team of researchers from the Department of Energy's Oak Ridge National Laboratory, Hunan University and the University of Nebraska-Lincoln used photoluminescence measurements, along with neutron and x-ray scattering, to study the relationship between the material's microscopic structure and its optoelectronic properties.


Neutron interactions revealed the orthorhombic structure of the hybrid perovskite stabilized by the strong hydrogen bonds between the nitrogen substituent of the methylammonium cations and the bromides on the corner-linked PbBr6 octahedra.

Source: Oak Ridge National Laboratory/Jill Hemman

By examining the material under varying degrees of temperature, the researchers were able to track atomic structural changes and establish how hydrogen bonding plays a key role in the material's performance. Their results are published in the journal Advanced Materials.

Hybrid perovskites hold promise to be more efficient in converting light into energy than traditional solar cell materials. They are also easier to manufacture as they can be spin cast from solution and do not require high-vacuum chambers for synthesis.

Unlike their singular silicon or germanium counterparts, hybrid perovskites are made of both organic and inorganic molecules. The structure is built from inorganic lead and bromine molecules arranged in octahedral units that form cages around the organic methylammonium cations (positively charged ions) consisting of carbon, nitrogen and hydrogen.

"The advantage of having both organic and inorganic molecules in a well-defined crystal structure means we can tailor the material by tuning either one group or the other to optimize the properties," said Kai Xiao, a researcher at ORNL's Center for Nanophase Materials Sciences.

"But even though researchers have been studying these materials for several years, we still don't fully understand on a fundamental level how the organic components are affecting the properties."

Finding the right combination and molecular orientation of the organic/inorganic components is the key to unlocking more functionality, but understanding those interactions requires the right tools.

"Neutrons are very good at this because they're sensitive to lighter elements like hydrogen," said ORNL instrument scientist Xiaoping Wang. "Because we're able to track each neutron, we get information about things like where the atoms are, what their temperature is, and how they're behaving."

Using the TOPAZ instrument at ORNL's Spallation Neutron Source, the team was able to observe the hydrogen bonding interactions at the atomic scale.

The experiment revealed the material undergoes significant structural changes between approximately 150 and 130 Kelvin (roughly -190 and -225 degrees Fahrenheit). Cooling the material slowed the movement of the organic component into an ordered state, in which precise in situ measurements were made in real time to observe exactly how the organic molecules were binding to the lead-bromine component through hydrogen bonds.

"We saw the ordering is directly related to the hydrogen bonding in the structure, and how any changes can affect the energy gap of the material," said Wang. "That lets us know how well sunlight is being absorbed and what that could mean in terms of applications for photovoltaic materials."

Complementary photoluminescence and x-ray scattering measurements, along with crystal synthesis, were conducted at CNMS. Theoretical calculations were performed by scientists in ORNL's Materials Science and Technology Division.

"Hybrid perovskites are already a good material," said Xiao. "Now that we know how the orientation of the organic molecules impacts the crystal structure, and how we can tune them further to change the desired properties, this new fundamental understanding will enable us to design new materials with even greater potential."

###

Xiao and Wang's coauthors include lead author Bin Yang, Wenmei Ming, Mao-Hua Du, Jong K. Keum, Alexander A. Puretzky, Christopher M. Rouleau, Jonsong Huang and David B. Geohegan.

The research was supported by DOE's Office of Science. The Spallation Neutron Source and the Center for Nanophase Materials Sciences are DOE Office of Science User Facilities. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Jeremy Rumsey
rumseyjp@ornl.gov
865-576-2038

 @ORNL

http://www.ornl.gov 

Jeremy Rumsey | EurekAlert!

More articles from Materials Sciences:

nachricht New method inverts the self-assembly of liquid crystals
15.04.2019 | University of Luxembourg

nachricht 'Deep learning' casts wide net for novel 2D materials
11.04.2019 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>