Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowires highly 'anelastic,' research shows

14.07.2015

Researchers from Brown University and North Carolina State University have found that nanowires made of zinc oxide are highly anelastic, meaning they return to shape slowly after being bent, rather that snapping right back. The findings, published in the journal Nature Nantechnology, add one more to the growing list of interesting properties found in nanoscale wires, tiny strands thousands of times thinner than a human hair.

"What's surprising here is the magnitude of the effect," said Huajian Gao, the Walter H. Annenberg Professor of Engineering and a coauthor of a new paper describing the research. "Anelasticity is present but negligible in many macroscale materials, but becomes prominent at the nanoscale. We show an anelastic effect in nanowires that is four orders of magnitude larger than what is observed in even the most anelastic bulk materials."


Zinc oxide nanowires return to shape slowly after being bent, new research from Brown and NC State shows. That property, called anelasticity, suggests that nanowires might be good in applications that require absorption of shocks or vibrations.

Credit: Zhu lab / NC State

The findings are significant in part because anelastic materials are good absorbers of kinetic energy. These results suggest that nanowires could be useful in damping shocks and vibrations in a wide variety of applications.

"During the last decade, zinc oxide nanowire has been recognized as one of the most important nanomaterials with a broad range of applications such as mechanical energy harvesting, solar cells, sensors and actuators," Gao said. "Our discovery of giant anelasticity and high energy dissipation in zinc oxide nanowires adds a new dimension to their functionality."

The experiments for the study were done in the lab of Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State. Zhu and his colleagues used a delicate apparatus to bend nanowires under a scanning electron microscope.

The work showed that, after the bending strain was released, the wires returned to about 80 percent of their original shape quickly. But they recovered the rest of their original shape much more slowly, over the course of up to 20 or 30 minutes. That is a far more prominent anelastic effect than is common at the macroscale.

To understand why the effect is so prominent, Zhu and his team worked with Gao's lab at Brown, which specializes in theoretical modeling of nanoscale systems. The model that Gao and his colleagues developed suggests that the anelasticity is a result of impurities in the wires' crystal lattice.

Lattice impurities come in two forms. There are vacancies, where atoms are missing from the lattice; and there are interstitials, where the lattice has extra atoms. When a wire is bent to form an arch, there's higher compressive strain on the underside of the arch compared to the upper side. The compression pushes interstitial atoms toward the outside edge, and draws the vacancies toward the inside. When the strain is released, those impurities migrate back to where they started.

That migration takes a bit of time, which is why the wire returns to shape slowly. Because nanowires are so small, the impurities need only travel a short distance to generate a perceptible anelastic effect, which is why the effect is so much more pronounced at the nanoscale compared to the macroscale.

To further test whether the anelasticity was rooted in impurities, the team tested wires made from a different material--silicon doped with boron impurities. Like the zinc oxide nanowires, the doped silicon also proved to be anelastic.

The findings suggest that anelasticity is likely a common property of single-crystal nanowires. "One reviewer [of our paper] commented that this is a new important page in the book on mechanics of nanostructures," Zhu said. "The factors that favor anelasticity, such as high strain gradient, short diffusion distance and large diffusivity of point defects, are all prominently present in nanowires".

###

Other authors on the paper were Guangming Cheng, Qingquan Qin, Jing Li, Feng Xu and Elizabeth C. Dickey from NC State, and Chunyang Miao and Hamed Haftbaradaran from Brown.

The research was supported by the National Science Foundation.

Kevin Stacey | EurekAlert!

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>