Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes laid out in stripes

02.06.2014

New technologies can be realized with thin layers of carbon nanotubes. Würzburg researchers have examined a technique that creates such layers, gaining fresh insights.

A number of technical innovations of recent times involve the use of thin layers of carbon nanotubes. In 2013, for instance, scientists from Stanford University (USA) presented the prototype of a computer whose electronic components are based not on silicon but on carbon nanotubes. And nanotubes are already being used in part in smartphone displays – as a more cost-effective alternative to conventional indium tin oxides.


Carbon nanotubes are deposited from a liquid onto a surface in regular stripes. Würzburg researchers have characterized this process more precisely.

(Graphic: Tobias Hertel)

Thin layers of carbon nanotubes can be generated using various methods. “It is very important to be able to control the production of the layers precisely in order to achieve the desired structures and properties,” says Professor Tobias Hertel from the University of Würzburg. His team at the Institute of Physical and Theoretical Chemistry has now gained new insights into this. These are presented in the journal “ACS Nano” published by the American Chemical Society (ACS).

Horizontal deposition of nanotubes

The team led by Tobias Hertel has examined the technique of horizontal deposition. In this, the nanotubes from an evaporating liquid are deposited onto a surface. “This technique uses the self-organization phenomena of the nanotubes,” explains the professor, “it enables, for example, the creation of extremely thin layers in which all nanotubes are arranged in the same orientation.”

Using this technique, layers can also be produced in which the nanotubes are organized into regular stripe patterns with dimensions in the micrometer range. “This effect is very similar to the formation of coffee deposits and is therefore also occasionally referred to as the coffee stain phenomenon,” says Hertel. The layers that are created like this are ideal for making nanotube-based transistors. But there was no clear idea before of how the regular stripes are formed and how this process can be controlled. Thanks to the research by the Würzburg scientists, this has now changed.

Smooth motion produces stripe pattern

Researchers previously assumed that the evaporating liquid moves jerkily over the surface to be coated and that every jolt causes a stripe of nanotubes to be left behind at its edge – “in the same way as a stuttering car tire on asphalt brings a car to a shuddering halt,” says Hertel by way of a comparison.

However, his team has now shown that the edge of the liquid moves over the surface at an ever slower pace in a smooth not jerky manner and then picks up speed again. Since this happens periodically, regular stripe patterns are produced.

Glass plates accelerate the process

The researchers have also discovered how to speed up this process considerably: “If we feed the liquid from which the layers are deposited between two glass plates that are only a hair's breadth apart, the stripe patterns form up to a hundred times faster.” Responsibility for this lies with the evaporation at the boundary between liquid and substrate, which can take place at any speed in theory – an effect that can only be felt at the micrometer level.

Professor Hertel has posted a video on YouTube. This shows in slow motion how a stripe pattern consisting of carbon nanotubes is created step by step using the technique of horizontal deposition: http://www.youtube.com/watch?v=KBHswRKdQXQ

Future research

The next experiments, according to Professor Hertel, will focus on controlling the layer formation better and accelerating it further. “If we want to make this process truly useful, we still have a whole lot of work ahead of us. In particular, we need to push back the limits of what is possible in terms of the speed at which these layers are created.”

Contact
Prof. Dr. Tobias Hertel, Institute of Physical and Theoretical Chemistry, University of Würzburg, T +49 (0)931 31-86300, tobias.hertel@uni-wuerzburg.de

“Dynamical Contact-Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation”, Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, Tobias Hertel. ACS Nano, published online on May 14, 2014, DOI: 10.1021/nn501957y

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: ACS Nano Nanotubes coffee created deposited effect formation glass layers patterns stripe technique transistors

More articles from Materials Sciences:

nachricht Additive manufacturing reflects fundamental metallurgical principles to create materials
18.01.2019 | University of Sheffield

nachricht Brilliant glow of paint-on semiconductors comes from ornate quantum physics
17.01.2019 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>