New nanoporous material has highest surface area yet

The work, by a team led by associate professor of chemistry Adam Matzger, is described in a paper published online March 6 in the Journal of the American Chemical Society.

“Surface area is an important, intrinsic property that can affect the behavior of materials in processes ranging from the activity of catalysts to water detoxification to purification of hydrocarbons,” Matzger said.

Until a few years ago, the upper limit for surface area of porous materials was thought to be around 3,000 square meters per gram. Then in 2004, a U-M team that included Matzger reported development of a material known as MOF-177 that set a new record. MOF-177 belonged to a new class of materials known as metal-organic frameworks—scaffold-like structures made up of metal hubs linked together with struts composed of organic compounds. Just one gram of MOF-177 has the surface area of a football field.

“Pushing beyond that point has been difficult,” Matzger said, but his group achieved the feat with the new material, UMCM-2 (University of Michigan Crystalline Material-2), which has a record-breaking surface area of more than 5,000 square meters per gram.

The researchers used a technique called coordination copolymerization to produce the new material. Previously, they used the same method to create a similar material, UMCM-1, which was made up of six, microporous cage-like structures surrounding a large, hexagonal channel. By using a slightly different combination of ingredients, Matzger's group came up with UMCM-2, which is composed of fused cages of various sizes and does not have the channel found in UMCM-1.

“The new structure is a bit surprising and shows how the coordination copolymerization method has real potential for new materials discovery,” Matzger said.

In the quest for new materials capable of compactly storing large amounts of hydrogen, researchers have assumed that increasing the surface area of porous materials will result in greater storage capacity. Interestingly, the hydrogen-holding ability of UMCM-2, while high, is no greater than that of existing materials in the same family, suggesting that surface area alone is not the key to hydrogen uptake. Even so, UMCM-2 is useful for helping define future research directions, Matzger said. “I think we needed this compound to demonstrate that high surface area alone is not enough for hydrogen storage.”

Media Contact

Nancy Ross-Flanigan EurekAlert!

More Information:

http://www.umich.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors