Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocups brim with potential

17.03.2009
Light-bending metamaterial could lead to superlenses, invisibility cloaks

Researchers at Rice University have created a metamaterial that could light the way toward high-powered optics, ultra-efficient solar cells and even cloaking devices.

Naomi Halas, an award-winning pioneer in nanophotonics, and graduate student Nikolay Mirin created a material that collects light from any direction and emits it in a single direction. The material uses very tiny, cup-shaped particles called nanocups.

In a paper in the February issue of the journal Nano Letters, co-authors Halas and Mirin explain how they isolated nanocups to create light-bending nanoparticles.

In earlier research, Mirin had been trying to make a thin gold film with nano-sized holes when it occurred to him the knocked-out bits were worth investigating. Previous work on gold nanocups gave researchers a sense of their properties, but until Mirin's revelation, nobody had found a way to lock ensembles of isolated nanocups to preserve their matching orientation.

"The truth is a lot of exciting science actually does fall in your lap by accident," said Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "The big breakthrough here was being able to lift the nanocups off of a structure and preserve their orientation. Then we could look specifically at the properties of these oriented nanostructures."

Mirin's solution involved thin layers of gold deposited from various angles onto polystyrene or latex nanoparticles that had been distributed randomly on a glass substrate. The cups that formed around the particles – and the dielectric particles themselves – were locked into an elastomer and lifted off of the substrate. "You end up with this transparent thing with structures all oriented the same way," he said.

In other words, he had a metamaterial, a substance that gets its properties from its structure and not its composition. Halas and Mirin found their new material particularly adept at capturing light from any direction and focusing it in a single direction.

Redirecting scattered light means none of it bounces off the metamaterial back into the eye of an observer. That essentially makes the material invisible. "Ideally, one should see exactly what is behind an object," said Mirin.

"The material should not only retransmit the color and brightness of what is behind, like squid or chameleons do, but also bend the light around, preserving the original phase information of the signal."

Halas said the embedded nanocups are the first true three-dimensional nanoantennas, and their light-bending properties are made possible by plasmons. Electrons inside plasmonic nanoparticles resonate with input from an outside electromagnetic source in the same way a drop of water will make ripples in a pool. The particles act the same way radio antennas do, with the ability to absorb and emit electromagnetic waves that, in this case, includes visible wavelengths.

Because nanocup ensembles can focus light in a specific direction no matter where the incident light is coming, they make pretty good candidates for, say, thermal solar power. A solar panel that doesn't have to track the sun yet focuses light into a beam that's always on target would save a lot of money on machinery.

Solar-generated power of all kinds would benefit, said Halas. "In solar cells, about 80 percent of the light passes right through the device. And there's a huge amount of interest in making cells as thin as possible for many reasons."

Halas said the thinner a cell gets, the more transparent it becomes. "So ways in which you can divert light into the active region of the device can be very useful. That's a direction that needs to be pursued," she said.

Using nanocup metamaterial to transmit optical signals between computer chips has potential, she said, and enhanced spectroscopy and superlenses are also viable possibilities.

"We'd like to implement these into some sort of useful device," said Halas of her team's next steps. "We would also like to make several variations. We're looking at the fundamental aspects of the geometry, how we can manipulate it, and how we can control it better.

"Probably the most interesting application is something we not only haven't thought of yet, but might not be able to conceive for quite some time."

The paper can be found at http://pubs.acs.org/doi/abs/10.1021/nl900208z?prevSearch=mirin&searchHistoryKey.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Kirigami inspires new method for wearable sensors
22.10.2019 | University of Illinois College of Engineering

nachricht Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics
21.10.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>