Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-infused ceramic could report on its own health

06.02.2019

Rice University-led simulations show unique ceramic could act as a sensor for structures

A ceramic that becomes more electrically conductive under elastic strain and less conductive under plastic strain could lead to a new generation of sensors embedded into structures like buildings, bridges and aircraft able to monitor their own health.


Ceramics with networked nanosheets of graphene and white graphene would have the unique ability to alter their electrical properties when strained, according to a researcher at Rice University. The surprising ability could lead to new types of structural sensors.

Credit: Rouzbeh Shahsavari/Rice University

The electrical disparity fostered by the two types of strain was not obvious until Rice University's Rouzbeh Shahsavari, an assistant professor of civil and environmental engineering and of materials science and nanoengineering, and his colleagues modeled a novel two-dimensional compound, graphene-boron-nitride (GBN).

Under elastic strain, the internal structure of a material stretched like a rubber band does not change. But the same material under plastic strain -- caused in this case by stretching it far enough beyond elasticity to deform -- distorts its crystalline lattice. GBN, it turns out, shows different electrical properties in each case, making it a worthy candidate as a structural sensor.

Shahsavari had already determined that hexagonal-boron nitride - aka white graphene - can improve the properties of ceramics. He and his colleagues have now discovered that adding graphene makes them even stronger and more versatile, along with their surprising electrical properties.

The magic lies in the ability of two-dimensional, carbon-based graphene and white graphene to bond with each other in a variety of ways, depending on their relative concentrations. Though graphene and white graphene naturally avoid water, causing them to clump, the combined nanosheets easily disperse in a slurry during the ceramic's manufacture.

The resulting ceramics, according to the authors' theoretical models, would become tunable semiconductors with enhanced elasticity, strength and ductility.

The research led by Shahsavari and Asghar Habibnejad Korayem, an assistant professor of structural engineering at Iran University of Science and Technology and a research fellow at Monash University in Melbourne, Australia, appears in the American Chemical Society journal Applied Materials and Interfaces.

Graphene is a well-studied form of carbon known for its lack of a band gap - the region an electron has to leap to make a material conductive. With no band gap, graphene is a metallic conductor. White graphene, with its wide band gap, is an insulator. So the greater the ratio of graphene in the 2D compound, the more conductive the material will be.

Mixed into the ceramic in a high enough concentration, the 2D compound dubbed GBN would form a network as conductive as the amount of carbon in the matrix allows. That gives the overall composite a tunable band gap that could lend itself to a variety of electrical applications.

"Fusing 2D materials like graphene and boron nitride in ceramics and cements enables new compositions and properties we can't achieve with either graphene or boron nitride by themselves," Shahsavari said.

The team used density functional theory calculations to model variations of the 2D compound mixed with tobermorite, a calcium silicate hydrate material commonly used as cement for concrete. They determined the oxygen-boron bonds formed in the ceramic would turn it into a p-type semiconductor.

Tobermorite by itself has a large band gap of about 4.5 electron volts, but the researchers calculated that when mixed with GBN nanosheets of equal parts graphene and white graphene, that gap would shrink to 0.624 electron volts.

When strained in the elastic regime, the ceramic's band gap dropped, making the material more conductive, but when stretched beyond elasticity - that is, in the plastic regime -- it became less conductive. That switch, the researchers said, makes it a promising material for self-sensing and structural health monitoring applications.

The researchers suggested other 2D sheets with molybdenum disulfide, niobium diselenide or layered double hydroxides may provide similar opportunities for the bottom-up design of tunable, multifunctional composites. "This would provide a fundamental platform for cement and concrete reinforcement at their smallest possible dimension," Shahsavari said.

###

Co-authors of the paper are graduate students Ehsan Hosseini and Mohammad Zakertabrizi of the Iran University of Science and Technology. The National Science Foundation and the Australian Research Council supported the research.

David Ruth, 713-348-6327, david@rice.edu
Mike Williams, 713-348-6728, mikewilliams@rice.edu

Read the abstract at https://pubs.acs.org/doi/10.1021/acsami.8b19409

This news release can be found online at https://news.rice.edu/2019/02/05/nano-infused-ceramic-could-report-on-its-own-health/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

White graphene makes ceramics multifunctional: http://news.rice.edu/2018/01/11/white-graphene-makes-ceramics-multifunctional-2/

Multiscale Materials Laboratory (Shahsavari Lab): http://rouzbeh.rice.edu/

Asghar Habibnejad Korayem: http://www.iust.ac.ir/content/40345/Dr.-Habibnejad-Korayem,-Asghar

George R. Brown School of Engineering: http://engineering.rice.edu

Rice Department of Civil and Environmental Engineering: http://www.ceve.rice.edu

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Image for download:

https://news-network.rice.edu/news/files/2019/01/0128_CERAMIC-1-WEB-2khpzam.jpg

Ceramics with networked nanosheets of graphene and white graphene would have the unique ability to alter their electrical properties when strained, according to a researcher at Rice University. The surprising ability could lead to new types of structural sensors. (Credit: Rouzbeh Shahsavari/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy.

With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review.

Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Mike Williams
mikewilliams@rice.edu
713-348-6728

 @RiceUNews

http://news.rice.edu 

Mike Williams | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acsami.8b19409

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>