Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-imaging of intersubband transitions in few-layer 2D materials

28.08.2018

Semiconducting heterostructures have been key to the development of electronics and opto-electronics. Many applications in the infrared and terahertz frequency range exploit transitions, called intersubband transitions, between quantized states in semiconductor quantum wells. These intraband transitions exhibit very large oscillator strengths, close to unity. Their discovery in III-V semiconductor heterostructures depicted a huge impact within the condensed matter physics community and triggered the development of quantum well infrared photodetectors as well as quantum cascade lasers.

Quantum wells of the highest quality are typically fabricated by molecular beam epitaxy (sequential growth of crystalline layers), which is a well-established technique. However, it poses two major limitations: Lattice-matching is required, restricting the freedom in materials to choose from, and the thermal growth causes atomic diffusion and increases interface roughness.


Schematic illustration of charge carriers confined within a TMD flake comprising different thicknesses. Charge carriers in the ground state (blue) can be excited upon resonant light excitation to a higher state (pink).

Credit: ICFO/Fabien Vialla

2D materials can overcome these limitations since they naturally form a quantum well with atomically sharp interfaces. They provide defect free and atomically sharp interfaces, enabling the formation of ideal QWs, free of diffusive inhomogeneities. They do not require epitaxial growth on a matching substrate and can therefore be easily isolated and coupled to other electronic systems such as Si CMOS or optical systems such as cavities and waveguides.

Surprisingly enough, intersubband transitions in few-layer 2D materials had never been studied before, neither experimentally nor theoretically. Thus, in a recent study published in Nature Nanotechnology, ICFO researchers Peter Schmidt, Fabien Vialla, Mathieu Massicotte, Klaas-Jan Tielrooij, Gabriele Navickaite, led by ICREA Prof at ICFO Frank Koppens, in collaboration with the Institut Lumière Matière - CNRS, Technical University of Denmark, Max Planck Institute for the Structure and Dynamics of Matter, CIC nanoGUNE, and the National Graphene Institute, report on the first theoretical calculations and first experimental observation of inter-sub-band transitions in quantum wells of few-layer semiconducting 2D materials (TMDs).

In their experiment, the team of researchers applied scattering scanning near-field optical microscopy (s-SNOM) as an innovative approach for spectral absorption measurements with a spatial resolution below 20 nm. They exfoliated TMDs, which comprisedterraces of different layer thicknesses over lateral sizes of about a few micrometers.

They directly observed the intersubband resonances for these different quantum well thicknesses within a single device. They also electrostatically tuned the charge carrier density and demonstrated intersubband absorption in both the valence and conduction band. These observations were complemented and supported with detailed theoretical calculations revealing many-body and non-local effects.

The results of this study pave the way towards an unexplored field in this new class of materials and offer a first glimpse of the physics and technology enabled by intersubband transitions in 2D materials, such as infrared detectors, sources, and lasers with the potential for compact integration with Si CMOS.

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.es
34-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>