Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“MuReA“ provides quick and large-scale laser applications

07.09.2017

The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS developed the novel remote system concept (MuReA) for quick, flexible and efficient laser processing tasks. IWS scientists combined laser remote systems, spindle drives and high performance beam sources with each other. As a result, this novel laser system enables large-scale, flexible and quick processing tasks for materials such as aluminum, stainless steel as well as fiber reinforced polymers. Working areas of up to one square meter can be processed at a laser beam speed of up to 10 meters per second. In particular, the automotive and the aerospace industry will benefit from possible applications.

Fraunhofer IWS engineers developed and designed a novel multi remote system, which is available for basic research tests and for further projects. The combination of height-adjustable high performance scanners with a movable cross table enables the engineers to process complex compounds in a flexible and large-scale manner.


The multi remote system of the Fraunhofer IWS Dresden processes large areas by means of laser radiation and atmospheric pressure plasma.

© Fraunhofer IWS Dresden


Förderung aus dem Europäischen Fonds für regionale Entwicklung (EFRE) im Freistaat Sachsen 2014 - 2020

The “MuReA” provides laser sources within the kilowatt power range of one micrometer and 10.6 micrometers. The beam sources can be used in a single as well as in a simultaneous mode. In addition, the Fraunhofer IWS Dresden designed the scanner and the machine table control in such a way that also continuous materials such as tissue, metal or organo sheet can be processed.

In this way, laser processes such as joining, cutting or ablation can be efficiently developed and be transferred into industrial applications. The spectrum of offers ranges from small series production to system configuration up to the adaption of system components for industrial purposes.

Consumer demand determines development

The development’s backdrop is the increasing demand for more efficient laser systems. Lightweight construction for sheet-like semi-finished products consisting of various materials, requires flexible production and processing technologies.

“In particular, automotive and aerospace industries demand machine systems, which achieve processing speeds of up to 100 meters per minute,” explains Annett Klotzbach, group manager “Bonding and Composite Technologies” at the Fraunhofer IWS Dresden. “Our solution approach consists of laser remote processes with beam sources, which are adapted to material and absorption properties.”

Two tiltable mirrors deflect the laser beam to the component and focus it with focal lengths of 200 up to 1000 millimeters. Even very small mirror deflections result in laser spot motion speeds of up to ten meters per second.

Safe, clean and activated

During the process of laser material ablation, cutting or structuring of carbon fiber reinforced polymers (CRFP) or stainless steel, hazardous particles or vapors emerge, which might damage electric as well as mechanical components of the system.

This is the reason why the IWS project team optimized the encapsulation of the electronics and additionally implemented a suction chamber. This chamber efficiently removes by-products from a working space (comprising about one cubic meter) and subsequently filters them out by means of particular filtering equipment.

For the task of the adhesive bonding of titanium and aluminum with fiber composite material the IWS team could clearly prove that a laser processing improves adhesive strength and aging stability. In this process the surface is cleaned and the oxide layer is positively influenced. Since a processing with atmospheric pressure plasma chemically activates the surface and improves the adhesion of different materials, the IWS team additionally implemented double rotary nozzles into the system. Thus a sequential and simultaneous material processing by means of plasma and laser becomes possible.

Come and visit us at the “Composites Europe” tradeshow in Stuttgart from September 19 to 21, 2017 in hall 4, booth D40 and at the tradeshow “Schweißen und Schneiden“in Düsseldorf from September 25 to 29, 2017 in hall 15, booth 15D23.

Contact:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Germany

Annett Klotzbach
Phone: +49 351 83391 3235
Fax: +49 351 83391 3300
E-Mail: annett.klotzbach@iws.fraunhofer.de

Public Relations
Dr. Ralf Jäckel
Phone: +49 351 83391-3444
Fax: +49 351 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

Weitere Informationen:

https://www.iws.fraunhofer.de/en/pressandmedia/press_releases/2017/press_release...

Dr. Ralf Jaeckel | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>