Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switch detects metals in the environment

15.08.2018

Researchers from UNIGE have developed a new type of chemical sensor capable of detecting the presence of metals in the environment

An international team, led by researchers from the University of Geneva (UNIGE), Switzerland, has designed a family of molecules capable of binding to metal ions present in its environment and providing an easily detectable light signal during binding.


When a metal ion is inserted, the molecule changes geometry, acting as an on/off switch.

Credit: UNIGE

This new type of sensor forms a 3D structure whose molecules are chiral, that is to say structurally identical but not superimposable, like an image and its reflection in a mirror, or like the left and right hands. These molecules consist of a ring and two luminescent arms that emit a particular type of light in a process called Circular Polarized Luminescence (CPL), and selectively detect ions, such as sodium. This research can be read about in Chemical Science.

«The luminescent arms of our molecules function like light bulbs that light up or turn off depending on the presence of a positively charged ion, a metal cation,» explains Jérôme Lacour, Dean of the Faculty of Science at UNIGE and Ordinary Professor in the Department of Organic Chemistry.

These molecules can be compared to small locks: when they are ready to operate and detect the presence of metals, they emit a particular type of light (circularly polarized). When a metal ion is inserted, it acts on them like a key, the lock geometry changes and the light disappears.

These «locks» are made up of two parts: a ring (a crown ether) that can encircle metal ions such as sodium, and two twisted arms that extend from the rim and act like light bulbs, allowing researchers to «see» whether metal ions are present or not.

In the absence of metal ions, the two arms are close together and emit intense polarized luminescence. When a metal ion is inserted, the molecule changes geometry. The arms move apart and stop emitting light.

Easy-to-read molecules

You can also «remove the key» by adding a scavenger molecule. The luminescence of both arms is then completely recovered. This on/off capability can be repeated over several on/off cycles, making these molecules effective and easy to read. The molecule thus behaves like a switch; it provides a clear signal whose practical applications could be numerous, starting with the detection of metals in the environment.

The design of such reversible switches generally involves the use of rare earths or other large complex supramolecular assemblies (polymers).

«Our system is based on a small molecule of carbon, oxygen and hydrogen, and has the advantage of reacting to simple and naturally abundant cations like sodium,» says Jérôme Lacour. Despite the functional complexity of the molecules, this new type of sensor can easily be assembled through only two synthetic steps, which could be established after three years of research.

Media Contact

Jérôme Lacour
Jerome.Lacour@unige.ch
41-223-796-655

 @UNIGEnews

http://www.unige.ch 

Jérôme Lacour | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C8SC02935K

Further reports about: 3D 3D structure Molecular UNIGE ions light bulbs luminescence sodium

More articles from Materials Sciences:

nachricht A robot and software make it easier to create advanced materials
06.12.2019 | Rutgers University

nachricht First field measurements of laughing gas isotopes
05.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>