Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT commissions Peratech to develop next generation tactile robotic skin

22.02.2010
Peratech Limited, the leader in new materials designed for touch technology solutions, has announced that they have been commissioned by the MIT Media Lab to develop a new type of electronic 'skin' that enables robotic devices to detect not only that they have been touched but also where and how hard the touch was.

The key to the sensing technology is Peratech's patented 'QTC' materials. QTC's, or Quantum Tunnelling Composites, are a unique new material type which provides a measured response to force and/or touch by changing its electrical resistance - much as a dimmer light switch controls a light bulb.

This enables a simple electronic circuit within the robot to determine touch. Being easily formed into unique shapes - including being 'draped' over an object much like a garment might, QTC's provide a metaphor for how human skin works to detect touch.

Uniquely, QTC's provide a 'proportional' response - in other words detecting 'how hard' they have been touched. Further, using Peratech's patented xy scanning technology, the robot is able to detect where on a matrix of sensors applied to areas such as the forearms, shoulders and torso, it has been touched.

As robotic devices continue to make inroads to our daily life, their ability to understand the presence and interaction with humans and other objects within a space becomes critically important. This research project is hoped to produce results which could soon be applied to a range of robotics projects that MIT works upon.

Peratech's QTC technology has an established track record for use in robotics, having previously been adopted by NASA for their Robonaut device and by Shadow Robot in the UK, producers of what is widely regarded as the World's most advanced robotic hand, which have utilised QTC to sense 'touch'. However, this project with MIT is a World first in enabling a human to interact - through touch across the body of a robot - much as they would with another human.

About QTC
QTC's are electro-active polymeric materials made from metallic or non-metallic filler particles combined in an elastomeric binder. These enable the action of 'touch' to be translated into an electrical reaction, enabling a vast array of devices to incorporate very thin and highly robust 'sensing' of touch and pressure. QTC’s unique properties enable it to be made into force sensitive switches of any shape or size. QTC switches and switch matrices can be screen printed allowing for development and integration of switches that are as thin as 75 microns.

QTC is also low power and interfaces can be designed with no start resistance so that without pressure, the switch draws no power and passes no current. Importantly, when pressure is applied, the resistance drops in proportion to the amount of pressure which allows sophisticated human machine interface designs that react to variations in pressure. QTC technology has no moving parts and requires no air gap between contacts. This makes it extremely reliable and suitable for integration into the thinnest electronic designs and with industry leading operational life.

About MIT
Massachusetts Institute of Technology is based in Cambridge, Massachusetts, USA. www.web.mit.edu
About Peratech
Peratech is the inventor and world leader in Quantum Tunnelling Composite (QTC) technology. Already widely used in robotics and defence, Peratech commercialised its QTC technology at the beginning of 2006 and is currently working with a number of key technology clients who are implementing QTC sensing technology within their own products.

QTC materials give enormous flexibility in the design, shape, thickness and style of a switch or pressure sensor and can be made in a range of elastomeric forms, including emulsive coatings (down to thicknesses of 10 microns), ‘bulk’ silicone or rubber and textile forms. Peratech pioneered the creation of electronic switches made from textiles as early as 2001. QTC has been recognised through numerous International awards and accolades including “Tomorrow’s World Industry Award 2002”, “Saatchi & Saatchi Innovation Award 2000” and “European Electronics Industry Award 2004”.

QTC materials have been used by organisations such as NASA, ILC Dover, Shadow Robotics and numerous government agencies World Wide. Peratech also owns SOFTswitch the pioneering creator of textile switching and Eleksen, the world leader in touch sensitive interactive textiles for electronics interface design. Further information is available from www.peratech.com

For further information, please contact
Peratech Limited, Old Repeater Station, Brompton-on-Swale, North Yorkshire, DL10 7JH United Kingdom. Tel: +44 (0) 8700 727272 Fax: +44 (0) 8700 727273 Email: info@peratech.com www.peratech.com
For interviews, further information or illustrations, please contact
Nigel Robson, Vortex PR
Island House, Forest Road, Forest, Guernsey, GY8 0AB, United Kingdom
Int. Tel: +44 1481 233080 UK Tel: 01481 233080 www.vortexpr.com
All trademarks are the property of their respective owners.

Nigel Robson | Vortex PR
Further information:
http://www.web.mit.edu

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>