Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking the ultrastructure of wood with 3D-printing for green products

27.06.2019

Researchers at Chalmers University of Technology, Sweden, have succeeded in 3D printing with a wood-based ink in a way that mimics the unique 'ultrastructure' of wood. Their research could revolutionise the manufacturing of green products. Through emulating the natural cellular architecture of wood, they now present the ability to create green products derived from trees, with unique properties - everything from clothes, packaging, and furniture to healthcare and personal care products.

The way in which wood grows is controlled by its genetic code, which gives it unique properties in terms of porosity, toughness and torsional strength. But wood has limitations when it comes to processing. Unlike metals and plastics, it cannot be melted and easily reshaped, and instead must be sawn, planed or curved.


The top images show how the researchers are able to precisely control the orientation of the cellulose nanofibrils, printing in different directions in the same way that natural wood grows. The lower images show a honeycomb structure with solid particles encapsulated in the air gaps between the printed walls. Cellulose has excellent oxygen barrier properties, meaning this could be a promising method for creating airtight packaging, for foodstuffs or pharmaceuticals for example.

Credit: Paul Gatenholm/Chalmers University of Technology


3D printing with sustainable Swedish forest materials. The microscopy images of real wood tissue and the 3D printed version show how the researchers mimicked the real wood's cellular architecture. The printed version is at a larger scale for ease of handling and display, but the researchers are able to print at any scale.

Credit: Yen Strandqvist/Chalmers University of Technology

Processes which do involve conversion, to make products such as paper, card and textiles, destroy the underlying ultrastructure, or architecture of the wood cells. But the new technology now presented allows wood to be, in effect, grown into exactly the shape desired for the final product, through the medium of 3D printing.

By previously converting wood pulp into a nanocellulose gel, researchers at Chalmers had already succeeded in creating a type of ink that could be 3D printed. Now, they present a major progression -successfully interpreting wood's genetic code, and digitising it so that it can instruct a 3D printer.

It means that now, the arrangement of the cellulose nanofibrils can be precisely controlled during the printing process, to actually replicate the desirable ultrastructure of wood. Being able to manage the orientation and shape means that they can capture those useful properties of natural wood.

"This is a breakthrough in manufacturing technology. It allows us to move beyond the limits of nature, to create new sustainable, green products. It means that those products which today are already forest-based can now be 3D printed, in a much shorter time. And the metals and plastics currently used in 3D printing can be replaced with a renewable, sustainable alternative," says Professor Paul Gatenholm, who has led this research through the Wallenberg Wood Science Centre at Chalmers.

A further advance is the addition of hemicellulose, a natural component of plant cells, to the nanocellulose gel. The hemicellulose acts as a glue, giving the cellulose sufficient strength to be useful, in a similar manner to the natural process of lignification, through which cell walls are built.

The new technology opens up a whole new area of possibilities. Wood-based products could now be designed and 'grown' to order - at a vastly reduced timescale compared with natural wood.

Paul Gatenholm's group has already developed a prototype for an innovative packaging concept. They printed out honeycomb structures, with chambers in between the printed walls, and then managed to encapsulate solid particles inside those chambers. Cellulose has excellent oxygen barrier properties, meaning this could be a promising method for creating airtight packaging for foodstuffs or pharmaceuticals for example.

"Manufacturing products in this way could lead to huge savings in terms of resources and harmful emissions," he says. "Imagine, for example, if we could start printing packaging locally. It would mean an alternative to today's industries, with heavy reliance on plastics and C02-generating transport. Packaging could be designed and manufactured to order without any waste".

They have also developed prototypes for healthcare products and clothing. Another area where Paul Gatenholm sees huge potential for the technology is in space, believing that it offers the perfect first test bed to develop the technology further.

"The source material of plants is fantastically renewable, so the raw materials can be produced on site during longer space travel, or on the moon or on Mars. If you are growing food, there will probably be access to both cellulose and hemicellulose," says Paul Gatenholm.

The researchers have already successfully demonstrated their technology at a workshop at the European Space Agency, ESA, and are also working with Florida Tech and NASA on another project, including tests of materials in microgravity.

"Traveling in space has always been the catalyst for material development on earth," he says.

###

Read the article "Materials from trees assembled by 3D printing - Wood tissue beyond nature limits" published in Applied Materials Today. The paper was first published online on 1 March 2019, with the print edition appearing in June 2019.

For more information, contact:

Paul Gatenholm
Professor, Chemistry and Chemical Engineering, Biopolymer Technology
paul.gatenholm@chalmers.se
+46 31 772 34 07

Media Contact

Joshua Worth
joshua.worth@chalmers.se
46-317-726-379

 @chalmersuniv

http://www.chalmers.se/en/ 

Joshua Worth | EurekAlert!
Further information:
http://www.chalmers.se/en/departments/chem/news/Pages/Mimicking-the-ultrastructure-of-wood-with-3D-printing-for-green-products.aspx
http://dx.doi.org/10.1016/j.apmt.2019.02.005

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>