New method makes culture of complex tissue possible in any lab

This advance, published online in the journal Advanced Materials, allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

According to the UC San Diego researchers, this process is more affordable and widely feasible than previous methods that required expensive equipment and expertise.

The new approach is remarkably simple: solutions of the components of each layer, including polymers, are mixed with varying concentrations of a common inert reagent to control density. The solutions are layered so that the difference in density segregates each solution, and then polymerized so that they form a gel. The structure of each layer can be altered by varying the concentration of polymers, and the discreteness of the transition between layers can be altered by allowing the solutions to diffuse.

Lead author Jerome Karpiak, graduate student in the UCSD Biomedical Sciences Program, said, “We're excited about the relevance of this method to tissue engineering. Since it offers such straightforward spatial control over structure and composition of stratified tissue scaffolds, including cell type and density, this technology could help the field move much faster.” Tissues cultured in vitro to mimic those in the body can potentially provide an alternative to transplantation for injured or degenerated tissue.

“We believe this approach will vastly broaden the number of labs capable of culturing complex tissue,” said Adah Almutairi, PhD, assistant professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, the Department of Nanoengineering and the Materials Science and Engineering Program at the UCSD Jacobs School of Engineering. “Because manipulation of structure and concentrations of signal molecules is much easier in this system than in intact organisms, it holds great potential to advance the study of development and disease.” For example, this method may offer a novel approach to study how surrounding molecules affect the growth of axons in neurodevelopmental disorders.

Additional researchers included Yogesh Ner, PhD. Research was funded in part by the National Institutes of Health Director's New Innovator program and King Abdulaziz City of Science and Technology.

Media Contact

Debra Kain EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors