Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method makes culture of complex tissue possible in any lab

10.02.2012
Scientists at the University of California, San Diego have developed a new method for making scaffolds for culturing tissue in three-dimensional arrangements that mimic those in the body.

This advance, published online in the journal Advanced Materials, allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

According to the UC San Diego researchers, this process is more affordable and widely feasible than previous methods that required expensive equipment and expertise.

The new approach is remarkably simple: solutions of the components of each layer, including polymers, are mixed with varying concentrations of a common inert reagent to control density. The solutions are layered so that the difference in density segregates each solution, and then polymerized so that they form a gel. The structure of each layer can be altered by varying the concentration of polymers, and the discreteness of the transition between layers can be altered by allowing the solutions to diffuse.

Lead author Jerome Karpiak, graduate student in the UCSD Biomedical Sciences Program, said, "We're excited about the relevance of this method to tissue engineering. Since it offers such straightforward spatial control over structure and composition of stratified tissue scaffolds, including cell type and density, this technology could help the field move much faster." Tissues cultured in vitro to mimic those in the body can potentially provide an alternative to transplantation for injured or degenerated tissue.

"We believe this approach will vastly broaden the number of labs capable of culturing complex tissue," said Adah Almutairi, PhD, assistant professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, the Department of Nanoengineering and the Materials Science and Engineering Program at the UCSD Jacobs School of Engineering. "Because manipulation of structure and concentrations of signal molecules is much easier in this system than in intact organisms, it holds great potential to advance the study of development and disease." For example, this method may offer a novel approach to study how surrounding molecules affect the growth of axons in neurodevelopmental disorders.

Additional researchers included Yogesh Ner, PhD. Research was funded in part by the National Institutes of Health Director's New Innovator program and King Abdulaziz City of Science and Technology.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>