Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018

UMass Amherst materials scientists have developed a method for making a charge-storing system that is easily integrated into clothing for 'embroidering a charge-storing pattern onto any garment'

A major factor holding back development of wearable biosensors for health monitoring is the lack of a lightweight, long-lasting power supply.


UMass Amherst researchers led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for "embroidering a charge-storing pattern onto any garment."

Credit: UMass Amherst/Trisha Andrew

Now scientists at the University of Massachusetts Amherst led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for "embroidering a charge-storing pattern onto any garment."

As Andrew explains, "Batteries or other kinds of charge storage are still the limiting components for most portable, wearable, ingestible or flexible technologies. The devices tend to be some combination of too large, too heavy and not flexible."

Their new method uses a micro-supercapacitor and combines vapor-coated conductive threads with a polymer film, plus a special sewing technique to create a flexible mesh of aligned electrodes on a textile backing.

The resulting solid-state device has a high ability to store charge for its size, and other characteristics that allow it to power wearable biosensors.

Andrew adds that while researchers have remarkably miniaturized many different electronic circuit components, until now the same could not be said for charge-storing devices.

"With this paper, we show that we can literally embroider a charge-storing pattern onto any garment using the vapor-coated threads that our lab makes. This opens the door for simply sewing circuits on self-powered smart garments." Details appear online in ACS Applied Materials & Interfaces.

Andrew and postdoctoral researcher and first author Lushuai Zhang, plus chemical engineering graduate student Wesley Viola, point out that supercapacitors are ideal candidates for wearable charge storage circuits because they have inherently higher power densities compared to batteries.

But "incorporating electrochemically active materials with high electrical conductivities and rapid ion transport into textiles is challenging," they add. Andrew and colleagues show that their vapor coating process creates porous conducting polymer films on densely-twisted yarns, which can be easily swelled with electrolyte ions and maintain high charge storage capacity per unit length as compared to prior work with dyed or extruded fibers.

Andrew, who directs the Wearable Electronics Lab at UMass Amherst, notes that textile scientists have tended not to use vapor deposition because of technical difficulties and high costs, but more recently, research has shown that the technology can be scaled up and remain cost-effective.

She and her team are currently working with others at the UMass Amherst Institute for Applied Life Sciences' Personalized Health Monitoring Center on incorporating the new embroidered charge-storage arrays with e-textile sensors and low-power microprocessors to build smart garments that can monitor a person's gait and joint movements throughout a normal day.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-2989

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu/newsoffice/article/umass-amherst-materials-scientist-creates
http://dx.doi.org/10.1021/acsami.8b08408

More articles from Materials Sciences:

nachricht A replaceable, more efficient filter for N95 masks
22.05.2020 | American Chemical Society

nachricht Capturing the coordinated dance between electrons and nuclei in a light-excited molecule
22.05.2020 | DOE/SLAC National Accelerator Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>