Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials governed by light

07.08.2017

Researchers at the UPV/EHU-University of the Basque Country have obtained hybrid photoactive materials with more stable and more rigid dyes that promise a broad range of applications

Hybrid materials are those that combine components of differing origins (organic and inorganic) in order to obtain materials different from conventional ones and which display new or improved properties owing to the synergistic effect between their components.


Channelled aluminophosphate with various encapsulated dyes emitting in the blue (acridine), green (pyronin Y) and red (LDS 722) regions of the spectrum, occluded separately (left) or simultaneously in the correct proportions to produce white light (right), under ultraviolet excitation light.

Credit: Rebeca Sola. UPV/EHU

Rebeca Sola, a researcher in the Department of Physical Chemistry in the UPV/EHU's Faculty of Science and Technology, has developed and exhaustively characterised hybrid, photoactive materials --which respond differently when exposed to excitation light-- which could have applications in highly different fields, such as optics and biomedicine.

In the research conducted in this department, hybrid materials were obtained, among other things, by incorporating fluorescent dyes, which are routinely used in solution, into channelled inorganic structures. These materials firstly give the dye protection, thus rendering it more stable against degradation and increasing the useful service life of the devices that incorporate them, and secondly, they provide the system with rigidity, which is interesting as this has the potential to increase the photophysical properties of the organic hosts (the dyes).

As the researcher explained, "highly fluorescent materials in which the dyes are found to be ordered were obtained, thus providing a highly anisotropic response to the linearly polarized light". In other words, materials that respond differently depending on the direction of the polarization of the incident light. Furthermore, it "is fairly straightforward," to synthesise these materials said Sola. "Crystalline structures in which the dye has already been occluded inside are obtained without any need to apply a diffusion process to insert the dye into the crystal."

Various optical applications

The researcher has thus obtained materials with a very wide range of optical properties. "Of great interest are those in which there is an artificial antenna effect with the ordering of the different kinds of dye and a unidirectional energy transfer," she said. This is translated into particles with multi-coloured fluorescence, which are capable of picking up the energy from light at one end and transferring it to the opposite end, which could be of interest with respect to integrating them into solar cells.

Another of the materials obtained is a solid material that emits delayed fluorescence: instead of the fluorescence of the system turning off as soon as the excitation source is removed, as is usually the case, it persists for tenths of a second and is perfectly visible to the naked eye. "This kind of technology could be of interest in LED technologies," she explained. And materials capable of transforming incident laser light into light with double the amount of energy were also obtained.

These materials not only allow the incorporation of a single dye into the inorganic structure, various dyes can also be simultaneously encapsulated. "With two dyes whose response is complementary, we have obtained fluorescent particles that change colour depending on the light polarization, and change from a blue fluorescent emission to a green one," added Sola. What is more, it is a reversible, reproducible process". By incorporating a third, red-emission dye in the correct proportion, a white-light emitting system was also obtained, "once again of interest for illumination systems," she concluded.

White-light emitters were also obtained by adding small organic molecules to certain frameworks of metal ions and organic compounds known as MOFs (Metal Organic Frameworks); ambient-temperature phosphorescence was also obtained with them. "Phosphorescence is an emission process that routinely calls for very low temperatures to prevent the phosphorescent light from deactivating," explained Sola.

Leap to biomedicine

The researchers have shown that hybrid materials may have applications in other fields, such as biomedicine. To do this, they used photosensitising substances suitable for photodynamic therapy. These are materials that combine organic and inorganic fragments to produce a kind of oxygen capable of causing the death of certain cells following excitation by light. Photodynamic therapy is a procedure used in dermatology, for example, to treat a range of skin diseases and even for different types of cancer. Materials that not only generate this type of cytotoxic oxygen but which are also fluorescent have been obtained. And "that makes them very useful for bioimaging as well," added the researcher. "The phototoxic action of these compounds is being explored by means of experiments in in-vitro cell cultures, and although the results are promising, we are still in the early phases of the study," she concluded.

###

Additional information

This study is part of the PhD thesis by Rebeca Sola-Llano (Barakaldo, 1989), entitled 'Synergism between organic and inorganic moieties: in the search of new hybrid materials for optics and biomedicine'. Her supervisors were the Ramón y Cajal researcher Virginia Martínez-Martínez and the UPV/EHU professor Iñigo López-Arbeloa. Research groups at the Institute of Catalysis and Petrochemistry in Madrid, the Complutense University of Madrid, the University of Kyoto, the Katholieke Universiteit of Leuven and the Autonomous University of Madrid collaborated in this thesis.

Bibliographical reference

M. J. Ortiz, E. Palao, R. Sola-Llano, A. Tabero, H. Manzano, A. R Agarrabeitia, A. Villanueva, I. López-Arbeloa, V. Martinez-Martinez. 'AcetylacetonateBODIPY?biscyclometalated Iridium(III) complexes: Effective strategy towards smarter fluorescent-photosensitizer agents' (2017). Chem. Eur. J. 10.1002/chem.201701347

Media Contact

Matxalen Sotillo
komunikazioa@ehu.eus
34-688-673-770

 @upvehu

http://www.ehu.es 

Matxalen Sotillo | EurekAlert!

Further reports about: biomedicine fluorescence fluorescent hybrid materials inorganic optics polarization

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>