Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials chemistry: When additives are good

15.03.2012
Researchers have devised a simple and inexpensive approach to making soft magnetic films for microwave applications
Soft magnetic materials can be easily magnetized and demagnetized. They are widely used in microwave devices, such as absorption of electromagnetic radiations.

Developers tend to use thin films of soft magnetic materials, as opposed to their bulk form, in mobile applications, such as cell phones and laptops, as well as military applications, such as stealth aircrafts. However, the conventional approach to making soft magnetic films requires a high vacuum environment, which is expensive and time-consuming. Moreover, the usual fabrication system is not suitable for the preparation of large sheet films, thereby limiting its application in manufacturing the soft magnetic materials for microwave absorption.

Bao-Yu Zong at the A*STAR Data Storage Institute and co-workers1 have now demonstrated the viability of fabricating soft magnetic thin films through electrodeposition, a plating technique that is scalable and can be performed at room temperature. The approach is not only simpler and cheaper to operate, but also versatile enough for making a wide range of soft magnetic materials for microwave applications.

The researchers chose to work with iron–cobalt–nickel alloy, a soft magnetic material with low permeability, high coercivity and other less-than-ideal properties. They added small amounts of organic compounds, including dimethylamine borane and sodium dodecyl sulfate, to the plating solution prior to deposition. The resulting thin films had much higher permeability and lower coercivity, which make them more desirable for microwave applications. The researchers suggest that the additives might have prevented iron from oxidizing during electrodeposition, thereby improving the quality of thin films obtained.

Zong and his team also explored the effect of adding inorganic compounds, such as aluminum potassium sulfate, to the plating solution. They detected an increased resistivity in the thin films — a result that is likely to be a consequence of the change in morphology of the material; that is, the shape of the nanoparticles changed from common granular to columnar (see image), as revealed by atomic force microscopy. The iron–cobalt–nickel thin films also exhibit strong microwave absorption in comparison to ordinary magnetic films. These unique properties are perfect for high-frequency microwave applications, including magnetic data storage, portable wireless and biotechnology devices.

The researchers have high hopes that their approach is applicable to the fabrication of a wide range of soft magnetic materials. "Our technique is cost-effective and scalable. We can create soft magnetic thin films on different size and type of substrates," says Zong. "In a subsequent step, we hope to transfer this methodology to related industrial companies."

The A*STAR-affiliated researchers contributing to this research are from the A*STAR Data Storage Institute

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

nachricht New flatland material: Physicists obtain quasi-2D gold
23.05.2019 | Moscow Institute of Physics and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>