Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material tested that could guarantee body protheses for more than 150 years

23.02.2010
Current body protheses do not last more than 10-15 years. After this time, the operation has to be repeated in order to change prothesis. It is usually problematic as, in general, it is elderly people that use the procedure.

Researcher Nere Garmendia, based in the Basque city of Donostia-San Sebastián, has just published her PhD, a thesis which may well mean the first step to solving this problem. According to Ms Garmendia, using a ceramic material called zirconia (Zr02), carbon nanotubes and nanoparticles of zirconia, a prothesis that will last more than 150 years can be produced.

The PhD thesis is titled Development of a new nanocompound material made of zirconia with coated carbon nanotubes, for orthopaedic applications. Ms Garmendia wished to show that the ageing and cracking of protheses could be avoided. To begin with, carbon nanotubes were added to the zirconia matrix – a technique that greatly strengthens its resistance. With this composite material as a base research was initiated.

The researcher reinforced the connection between the zirconia matrix and the nanotubes, with the intention of improving the transfer/distribution of loads. The nanotubes were coated with nanoparticles of zirconia and, in order for this to be effected, the nanoparticles were heated beyond their boiling point (hydrothermal synhtesis). This coating functioned as a bridge between the zirconia matrix and the nanotubes.

Ms Garmendia explained in her thesis that working at a nanometric scale is precisely the key to achieving long-lasting protheses. In a prior experiment with micrometric zirconia it was concluded that this material would end up considerably aged after 12 years. Nevertheless, as has been pointed out, apart from the zirconia matrix, adding carbon nanotubes and the nanoparticles of zirconia coating them, the material will not age -even after 150 years.
The maximum possible density

With the nanotubes coated, Ms Garmendia investigated the capacity for the displacement and dispersion of the composite obtained from the previous process, and also looked for its suitable point of density. Based on this and aided by plaster, she achieved the first compact pieces.

Subsequently, Ms Garmendia specified the number of coated nanotubes each piece had to have in order to achieve the optimum density at the end of the process. According to the researcher, adding zirconia nanoparticles to the nanotubes facilitates the dispersion of the material and reduces its viscosity, apart from helping to increase its density for the next and last stage: the synterisation stage. Synterisation is a process, used particularly in ceramics, in order to transform the material from powder to a compact solid. Not just any quantity is useful to achieve this maximum possible density and, thus, before synterisation, it has to be decided how many nanotubes are to be introduced and, of course, synterisation has to be subsequently carried out correctly.

As Ms Garmendia calculated, if the intention is to obtain the maximum possible density (98%), in order to start the composition, 1% of its volume must be of coated nanotubes. Finally, the material has to be synterised in argon for one hour at 1,300 degrees; not more nor less.
About the author

Ms Nere Garmendia Arcelus (Donostia, 1980) is an industrial engineer, having graduated in 2003 from TECNUN-University of Navarra. She undertook her PhD thesis under the direction of Isabel Obieta Vilallonga and Ana García Romero, from the Department of Mining Engineering and Metallurgy and Materials Sciences of the Higher Technical School of Engineering in Bilbao.

She is currently working at Inasmet-Tecnalia where she carried out her PhD. She also worked with other bodies for the research: INSA-Lyon in France (six months), the Institute of Ceramics and Glass-CSIC in Madrid (six weeks), the Donostia International Physics Center (on various simulations), the Universitat de Barcelona (microscopy) and the CINN-CSIC in Oviedo (on the development of the material).

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>