Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material approach should increase solar cell efficiency

24.04.2013
“When designing next generation solar energy conversion systems, we must first develop ways to more efficiently utilize the solar spectrum,” explained Lane Martin, whose research group has done just that.

“This is a fundamentally new way of approaching these matters,” said Martin, who is an assistant professor of materials science and engineering (MatSE) at Illinois. “From these materials we can imagine carbon-neutral energy production of clean-burning fuels, waste water purification and remediation, and much more.”


The correlated electron metal SrRuO3 exhibits strong visible slight absorption. Overlaid here on the AM1.5G solar spectrum, it can be seen that SrRuO3 absorbs more than 75 times more light than TiO2. The structural, chemical, and electronic compatibility of TiO2 and SrRuO3 further enables the fabrication of heterojunctions with exciting photovoltaic and photocatalytic response driven by hot-carrier injection.

Martin’s research group brought together aspects of condensed matter physics, semiconductor device engineering, and photochemistry to develop a new form of high-performance solar photocatalyst based on the combination of the TiO2 (titanium dioxide) and other “metallic” oxides that greatly enhance the visible light absorption and promote more efficient utilization of the solar spectrum for energy applications. Their paper, “Strong Visible-Light Absorption and Hot-Carrier Injection in TiO2/SrRuO3 Heterostructures,” appears in the journal Advanced Energy Materials.

According to Martin, the primary feature limiting the performance of oxide-based photovoltaic and/or photocatalytic systems has traditionally been the poor absorption of visible light in these often wide band gap materials. One candidate oxide material for such applications is anatase TiO2, which is arguably the most widely-studied photocatalyst due to its chemical stability, non-toxicity, low-cost, and excellent band alignment to several oxidation-reduction reactions. As the backbone of dye-sensitized solar cells, however, the presence of a light-absorbing dye accounts for a large band gap which limits efficient usage of all but the UV portion of sunlight.

“We observed that the unusual electronic structure of SrRuO3 is also responsible for unexpected optical properties including high absorption across the visible spectrum and low reflection compared to traditional metals,” stated Sungki Lee, the paper’s first author. “By coupling this material to TiO2 we demonstrate enhanced visible light absorption and large photocatalytic activities.”

“SrRuO3 is a correlated electron oxide which is known to possess metallic-like temperature dependence of its resistivity and itinerant ferromagnetism and for its widespread utility as a conducting electrode in oxide heterostructures,” Lee added. Referring to this material as a “metal,” however, is likely inappropriate as the electronic structure and properties are derived from a combination of complex electronic density of states, electron correlations, and more.

Using a process called photo-excited hot-carrier injection from the SrRuO3 to the TiO2, the researchers created new heterostructures whose novel optical properties and the resulting high photoelectrochemical performance provide an interesting new approach that could advance the field of photocatalysis and further broaden the potential applications of other metallic oxides.

This work provides an exciting new approach to the challenge of designing visible-light photosensitive materials and has resulted in a provisional patent application. The work was primarily supported by the ongoing International Institute for Carbon Neutral Energy Research (I2CNER) program, a partnership between Kyushu University in Japan and the University of Illinois.

“The I2CNER project brings together some of the leading energy researchers from around the globe,” explained I2CNER Director Petros Sofronis, who is also a professor in the Department of Mechanical Science and Engineering at Illinois. “Results from Dr. Martin’s research group and others demonstrate that I2CNER is not only an experiment on international collaboration. It is a concerted institutionalized effort to pursue green innovation and reduced CO2 emissions, as well as to advance fundamental science and develop science-based technological solutions for the reorganization of sustainable and environmentally friendly society.”

Contact:
Lane Martin, Department of Materials Science and Engineering, 217/244-9162

Petros Sofronis, director, International Institute for Carbon Neutral Energy Research, 217/333-2636.

Writer: Rick Kubetz, Engineering Communications Office, 217/244-7716

Lane Martin | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>