Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018

Researchers from the University of Bremen and the Fraunhofer Institute for Manufacturing Technology and Advanced Materials Research (IFAM) are currently involved in the EU program Mat4Rail. Together with 16 partners from seven European countries, they are working on new developments in railway technology.

The number of passengers carried by rail has been steadily increasing since 2004. In addition to rising passenger demand, the railway sector will also face further challenges in the future, such as growing traffic requirements, traffic congestion, safety and energy issues, and climate change. Of great importance, therefore, is the development of innovative materials and a modular design for rail vehicles.


Mat4Rail Logo

© Mat4Rail


Members of the Mat4Rail Consortium

© Mat4Rail

A further central goal of the European research project is to reduce the weight of trains. Prerequisite for this is that newly developed light-weight composites meet requirements in respect of mechanical stability and fire behavior. Mat4Rail also aims at developing new concepts to increase carrying capacity and passenger comfort through the integrated modularity of carriage interiors.

Collaboration on a new generation of trains

As part of the Mat4Rail project, researchers at the University of Bremen and Fraunhofer IFAM are working on the development of flame-retardant lightweight materials. Project leader Professor Bernd Mayer explains: “The Mat4Rail project allows us to investigate and optimize innovative matrix systems with regard to their fire behavior in combination with carbon, glass and basalt fibers. We’re excited about this opportunity to work on the emergence of a whole new generation of rail vehicles.”

The 4-person research team around Mayer consists of two production technicians and a chemist, who are supported by researchers from Fraunhofer IFAM. The little over two-year Bremen project is being funded with almost 500,000 euro.

Part of the world's largest research program Horizon 2020

Mat4Rail is part of the so-called Shift2Rail Joint Undertaking (S2R JU), a public-private partnership launched in the frame of the Horizon 2020 EU research program. The goal of S2R JU is to secure and strengthen the competitiveness of the European rail industry. Horizon 2020 is the world's largest transnational support program for science, technology development, and innovation. In addition to SMART, Mat4Rail is already the second Shift2Rail project in which the University of Bremen is directly involved. SMART is about automation in rail freight transport.

Innovation through cooperation

The University of Bremen and the Fraunhofer Institute for Manufacturing Technology and Applied Materials Research (IFAM) are members of the “U Bremen Research Alliance”, which was formed to strengthen research cooperation between the University and top-level non-university research institutes. The collaborative research conducted in the Mat4Rail project strengthens the research alliance and simultaneously makes the University of Bremen more internationally visible as a place of top research.

If you would like to have more information on this topic, feel free to contact:

Prof. Dr. Bernd Mayer
Faculty of Production Engineering – Mechanical Engineering & Process Engineering
University of Bremen
Phone: +49 421 2246-419
Email: bernd.mayer@uni-bremen.de

Stefanie Möller | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bremen.de

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
21.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>