Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping nanoscale chemical reactions inside batteries in 3-D

05.03.2018

Researchers from the University of Illinois at Chicago and Lawrence Berkeley National Laboratory have developed a new technique that lets them pinpoint the location of chemical reactions happening inside lithium-ion batteries in three dimensions at the nanoscale level. Their results are published in the journal Nature Communications.

"Knowing the precise locations of chemical reactions within individual nanoparticles that are participating in those reactions helps us to identify how a battery operates and uncover how the battery might be optimized to make it work even better," said Jordi Cabana, associate professor of chemistry at UIC and co-corresponding author on the paper.


This is lithium iron phosphate.

Credit: Jordi Cabana

As a battery charges and discharges, its electrodes -- the materials where the reactions that produce energy take place -- are alternately oxidized and reduced. The chemical pathways by which these reactions take place help determine how quickly a battery becomes depleted.

Tools available to study these reactions can only provide information on the average composition of electrodes at any given point in time. For example, they can let a researcher know what percentage of the electrode has become permanently oxidized.

But these tools cannot provide information on the location of oxidized portions in the electrode. Because of these limitations, it is not possible to tell if reactions are confined to a certain area of the electrode, such as the surface of the material, or if reactions are taking place uniformly throughout the electrode.

"Being able to tell if there is a tendency for a reaction to take place in a specific part of the electrode, and better yet, the location of reactions within individual nanoparticles in the electrode, would be extremely useful because then you could understand how those localized reactions correlate with the behavior of the battery, such as its charging time or the number of recharge cycles it can undergo efficiently," Cabana said.

The new technique, called X-ray ptychographic tomography, came about through a partnership between chemists at UIC and scientists at the Advanced Light Source, at Lawrence Berkeley National Laboratory in California. Advanced Light Source scientists developed the instrumentation and measurement algorithms, which were used to help answer fundamental questions about battery materials and behavior identified by the UIC team.

Together, the two teams used the tomographic technique to look at tens of nanoparticles of lithium-iron phosphate recovered from a battery electrode that had been partially charged. The researchers used a coherent, nanoscale beam of X-rays generated by the high-flux synchrotron accelerator at the Advanced Light Source to interrogate each nanoparticle. The pattern of absorption of the beam by the material gave the researchers information about the oxidation state of iron in the nanoparticles in the X-ray beam.

Because they were able to move the beam just a few nanometers over and run their interrogation again, the team could reconstruct chemical maps of the nanoparticles with a resolution of about 11 nanometers. By rotating the material in space, they could create a three-dimensional tomographic reconstruction of the oxidation states of each nanoparticle. In other words, they could tell the extent to which an individual nanoparticle of lithium iron phosphate had reacted.

"Using our new technique, we could not only see that individual nanoparticles showed different extents of reaction at a given time, but also how the reaction worked its way through the interior of each nanoparticle," Cabana said.

###

The UIC chemists are members of the NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the Department of Energy to investigate how Li-ion batteries work so that better, longer-lasting and lighter devices can be designed.

David Shapiro of Lawrence Berkeley National Laboratories is the co-corresponding author on the paper. Young-Sang Yu, Maryam Farmand, Tolek Tyliszczak, Rich Celestre, Peter Denes, A. L. David Kilcoyne, Stefano Marchesini, Tony Warwick, John Joseph, Harinarayan Krishnan, Costa Leite and Howard Padmore of Lawrence Berkeley National Laboratory; Chunjoong Kim of the University of Illinois at Chicago; Yijin Liu of SLAC National Accelerator Laboratory, Menlo Park, California; Clare Grey, Fiona Strobridge of NECCES at the University of Cambridge; and Filipe Maia of Uppsala University, are co-authors on the paper.

This research was supported by the NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0012583, a grant from the National Research Lab (NRF- 2015R1A2A1A01006192), a program of the National Research Foundation of Korea, by the Center for Applied Mathematics for Energy Research Applications, a partnership between Basic Energy Sciences and Advanced Scientific Computing Research at the U.S Department of Energy.

Media Contact

Sharon Parmet
sparmet@uic.edu
312-413-2695

 @uicnews

http://www.uic.edu 

Sharon Parmet | EurekAlert!

More articles from Materials Sciences:

nachricht Graphene-based actuator swarm enables programmable deformation
02.04.2020 | Science China Press

nachricht How to remove dirt easily
02.04.2020 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

EU project GALACTIC develops supply chain for Alexandrite laser crystals

02.04.2020 | Machine Engineering

FaceHaptics – Simulation for all senses in VR

02.04.2020 | Information Technology

Most of Earth's carbon was hidden in the core during its formative years

02.04.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>