Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulation of the characteristics of magnetic materials

17.11.2016

Magnets are not everywhere equally magnetized, but automatically split up into smaller areas, so-called magnetic domains. The walls between the domains are of particular importance: they determine the magnetic properties of the material. A research team of material scientists from Kiel University is working on artificially creating domain walls to be able to modify in a controlled way the behaviour of magnets on a nanometre scale. In the long term, this method could also be used for high-speed and energy-efficient data transfer. The research results were recently published in the renowned journal “Scientific Reports”.

Splitting a magnetic material into small domains has significant energy benefits. But the focus of the research team from Kiel University is on the walls which separate the domains from each other.


In the simulation, magnetic signals spread along the domain walls in a few nanoseconds. The signals behave in a wave-like manner, with the initially high amplitude rapidly becoming smaller.

McCord


Jeffrey McCord has been working as Professor of Materials Science, focusing on magnetic domains, at Kiel University since 2011.

Denis Schimmelpfennig / Kiel University

“The position and the density of these walls determine the characteristics of the entire magnetic layer,” said Jeffrey McCord, Professor of Nanoscale Magnetic Materials, with a focus on magnetic domains. “Being able to specifically set the positions of domain walls, therefore, has a major impact – but it's not all that easy to do,” said the leader of the research team.

In order to precisely position the domains and domain walls, the research team used a special method: the scientists irradiated magnetic multilayer films with ions. Domain wall structures, which are normally arranged randomly, can thereby be “imprinted” in the magnetic material as desired.

“In this way, magnetic characteristics can be specifically modified, and on a reproducible basis as well. We can thus determine the positions of the domain walls ourselves and build our own domain wall gratings out of millions of 50-nanometre-wide walls. This allows us to create magnetic materials which display a completely different behaviour to external magnetic fields,” said a delighted McCord.

“We were surprised at how well spin waves spread in the domain walls and are directed by them,” emphasised McCord. Electron spins are also suitable for processing and encoding information.

In the long term, therefore, the discoveries made by the Kiel scientists could be interesting for data transfer that does not take place via electrons, but via magnons – i.e. magnetic information transfer. “With artificially created domain wall structures, we can direct data streams faster and with less energy,” said McCord. Further areas of application include highly-sensitive magnetic sensors.

Original publication:
J. Trützschler, K. Sentosun, B. Mozooni, R. Mattheis, J. McCord. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization, Scientific Reports 6, 30761 (2016) DOI: 10.1038/srep30761
www.nature.com/articles/srep30761

Photos are available to download:
www.uni-kiel.de/download/pm/2016/2016-387-1.jpg
In the simulation, magnetic signals spread along the domain walls (DW) in a few nanoseconds (ns). In ten nanoseconds, a ray of light travels three metres. The signals behave in a wave-like manner, with the initially high amplitude rapidly becoming smaller.
Photo/Copyright: McCord

www.uni-kiel.de/download/pm/2016/2016-387-2.jpg
Jeffrey McCord has been working as Professor for Nanoscale Magnetic Materials, focusing on magnetic domains, at Kiel University since 2011.
Photo/Copyright: Denis Schimmelpfennig / Kiel University

Contact:
Jeffrey McCord
Institute for Materials Science
Professor for Nanoscale Magnetic Materials
Tel.: +49 (0)431 880 6123
E-mail: jemc@tf.uni-kiel.de

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de 

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Julia Siekmann
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>