Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making it big

09.05.2014

The use of a fabrication technique borrowed from the semiconductor industry brings metamaterial applications a step closer to reality

Metamaterials
Artificial materials engineered to have properties not found in nature, such as a negative refractive index
are engineered to interact with light and sound waves in ways that natural materials cannot. They thus have the potential to be used in exciting new applications, such as invisibility cloaks, high-resolution lenses, efficient and compact antennas, and highly sensitive sensors.

While the theory of this interaction is relatively well understood, it has been challenging to fabricate metamaterials that are large enough to be practical. Now, Yi Zhou and colleagues at the A*STAR Data Storage Institute in Singapore have demonstrated a promising new fabrication technique that can produce large areas of an important class of metamaterial, known as fishnet metamaterials1.

Most optical metamaterials consist of tiny repeated metallic structures. When light of a particular frequency falls on them, it establishes oscillating fields inside each structure. These fields can resonate with each other and thereby produce desirable collective behavior. Fishnet metamaterials usually have several vertically stacked repeat units spread out over much larger lateral dimensions. Because they are structured both vertically and laterally, they are called three-dimensional materials.

Fishnet metamaterials are usually made in one of two ways. They can be fabricated by carefully patterning individual films and then stacking these films on top of each other. However, this multilayer process is difficult, as it requires careful alignment of the films.

The second approach is to pattern a sacrificial substrate and then deposit repeated layers onto it. This ‘pattern-first’ process suffers from its own difficulties, the most important of which is that the total thickness of the final fishnet material is typically limited to tens of nanometers or less. This restricts the kind of resonances that can be achieved and, in turn, the functionality of the final film.

Zhou and colleagues were able to increase the total thickness of pattern-first fishnet films to around 300 nanometers, allowing five bilayers of film to be deposited and resulting in a strong characteristic resonance and pronounced metamaterial behavior. To achieve this, they adopted a technique called trilayer lift-off, which is commonly used in industry but seldom applied in research laboratories. It involves patterning a sacrificial layer of a photoresist resting on a layer of silicon dioxide under which lies a second photoresist layer.

By alternating the patterning and etching steps, the A*STAR team could achieve a film thickness greatly exceeding the size of the lateral patterns etched into the film. “This technique will help researchers design large-area three-dimensional nanodevices more easily,” says Zhou, “and help bring the science of metamaterials to reality.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Journal information

Zhou, Y., Chen, X. Y., Fu, Y H., Vienne, G., Kuznetsov, A. I., & Luk’yanchuk, B. Fabrication of large-area 3D optical fishnet metamaterial by laser interference lithography. Applied Physics Letters 103, 123116 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: A*STAR Applied Storage dimensions large materials metamaterials nanometers

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>