Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic sense for everyone

03.02.2015

Scientists from Germany and Japan have developed a new magnetic sensor, which is thin, robust and pliable enough to be smoothly adapted to human skin, even to the most flexible part of the human palm. This is feeding the vision to equip humans with magnetic sense.

Magnetoception is a sense which allows bacteria, insects and even vertebrates like birds and sharks to detect magnetic fields for orientation and navigation. Humans are however unable to perceive magnetic fields naturally.


The new magnetic sensors are light enough (three gram per square meter) to float on a soap bubble.

Photo: IFW Dresden


Imperceptible magnetic sensor array on a human palm with one element connected to a readout circuit.

Photo: IFW Dresden

Dr. Denys Makarov and his team have developed an electronic skin with a magneto-sensory system that equips the recipient with a “sixth sense” able to perceive the presence of static or dynamic magnetic fields. These novel magneto-electronics are less than two micrometers thick and weights only three gram per square meter; they can even float on a soap bubble.

The new magnetic sensors withstand extreme bending with radii of less than three micrometer, and survive crumpling like a piece of paper without sacrificing the sensor performance. On elastic supports like a rubber band, they can be stretched to more than 270 percent and for over 1,000 cycles without fatigue. These versatile features are imparted to the magnetoelectronic elements by their ultra-thin and –flexible, yet robust polymeric support.

“We have demonstrated an on-skin touch-less human-machine interaction platform, motion and displacement sensorics applicable for soft robots or functional medical implants as well as magnetic functionalities for electronics on the skin”, says Michael Melzer, the PhD student of the ERC group led by Denys Makarov concentrating on the realization of flexible and stretchable magnetoelectronics.

“These ultrathin magnetic sensors with extraordinary mechanical robustness are ideally suited to be wearable, yet unobtrusive and imperceptible for orientation and manipulation aids” adds Prof. Oliver G. Schmidt, who is the director of the Institute for Integrative Nanosciences at the IFW Dresden.

This work was carried out at the Leibniz Institute for Solid State and Materials Research (IFW Dresden) and the TU Chemnitz in close collaboration with partners at the University of Tokyo and Osaka University in Japan.

The original work was published in Nat. Commun. 6, 6080 (2015) http://www.nature.com/ncomms/2015/150121/ncomms7080/full/ncomms7080.html

Contact:
Dr. Denys Makarov,
Institute for Integrative Nanosciences
at Leibniz Institute for Solid State and Materials Research (IFW Dresden)
Germany
E-mail: d.makarov@ifw-dresden.de
Phone: +49 351 4659 648

Prof. Oliver G. Schmidt
Institute for Integrative Nanosciences
at Leibniz Institute for Solid State and Materials Research (IFW Dresden)
Germany
E-mail: o.schmidt@ifw-dresden.de
Phone: +49 351 4659 810

Weitere Informationen:

http://www.ifw-dresden.de/press-and-events/press-release/current-news/article/-6...

Dr. Carola Langer | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>