Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018

Although machine learning technique gained amazing success in many aspects, its application in crystal structure predictions and materials design is still under developing. Recently, Prof. Jian Sun's group at the Department of Physics, Nanjing University implemented a machine-learning algorithm into the crystal structure search method. They use a machine learning algorithm to fit a model to describe the potential energy surface and use it to filter the crystal structures initially. This can effectively enhance the search efficiency of crystal structure prediction.

On the other hand, hybrid compounds of transition metals and light elements, especially transition metal nitrides have been widely studied for their high incompressibility and bulk modulus. However, superhard (Vickers hardness over 40 GPa) tungsten nitrides have not been found yet.


Crystal structrure and theoretical electronic structures of new W-N phases.

Credit: ©Science China Press

The energy bands contributed by d valence electrons of tungsten atoms can easily cross the fermi energy level, and the metallicity leads to great reduction of their hardness. Therefore, designing non-metallic tungsten nitride crystal structures seems be a promising way to reach outstanding mechanical properties, such as superhardness.

Based on previous researches, a collaborated research team led by Prof. Jian Sun and Prof. Hui-Tian Wang at Department of Physics, Nanjing University summarized three clues for designing superhard hybrid compounds of transition metal and light elements: the high-pressure stable and ambient-pressure metastable crystal structure, the non-metallic electronic structures, and a large ratio of light elements.

These clues inspired them to design nitrogen-rich tungsten nitrides containing special nitrogen-based basic configurations, such as rings, chains, networks and frameworks, etc. Based on these designing rules and newly developed machine-learning accelerated crystal structure search method, they have successfully predicted a non-metallic nitrogen-rich tungsten nitride h-WN6.

It has a sandwich-like structure, formed by nitrogen armchair-like six-membered ring and tungsten atoms. The electron localization function and Bader charge analysis indicate that h-WN6 is an ionic crystal containing strong N-N covalent bonds. It can be stable at high pressures and metastable at ambient pressure.

Moreover, it has a small indirect energy-gap and abnormal gap broadening behavior under compression. (see the crystal structure, electronic structures and the high pressure behaviors in the attached Figure) More interestingly, h-WN6 is estimated to be the hardest among transition metal nitrides known so far, with a Vickers hardness around 57 GPa and also has a pretty high melting temperature of around 1,900 K. Moreover, their calculations also show that this nitrogen-rich compound can be considered as a potential high-energy-density material because of the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities.

Their work developed a machine learning accelerated crystal structure search method, summarized the designing rules of superhard transition metal light elements compounds, and predicted a superhard and high-energy-density tungsten nitride with good thermal stability. It will stimulate the theoretical design and experimental synthesis of this kind of transition metal materials with potential application value. This will also enrich the family of superhard materials and may be used a reference for understanding the origin of hardness.

###

This work was supported by the Ministry of Science and Technology of the People's Republic of China (2016YFA0300404 and 2015CB921202), the National Natural Science Foundation of China (51372112 and 11574133), the NSF of Jiangsu Province (BK20150012), the Fundamental Research Funds for the Central Universities, the Science Challenge Project (TZ2016001) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) (U1501501).

See the article:

Kang Xia, Hao Gao, Cong Liu, Jianan Yuan, Jian Sun, Hui-Tian Wang, Dingyu Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Science Bulletin, 2018, Vol. 63, No. 13: 817-824 https://www.sciencedirect.com/science/article/pii/S2095927318302494

J. Sun | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2018.05.027

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>