Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018

Although machine learning technique gained amazing success in many aspects, its application in crystal structure predictions and materials design is still under developing. Recently, Prof. Jian Sun's group at the Department of Physics, Nanjing University implemented a machine-learning algorithm into the crystal structure search method. They use a machine learning algorithm to fit a model to describe the potential energy surface and use it to filter the crystal structures initially. This can effectively enhance the search efficiency of crystal structure prediction.

On the other hand, hybrid compounds of transition metals and light elements, especially transition metal nitrides have been widely studied for their high incompressibility and bulk modulus. However, superhard (Vickers hardness over 40 GPa) tungsten nitrides have not been found yet.


Crystal structrure and theoretical electronic structures of new W-N phases.

Credit: ©Science China Press

The energy bands contributed by d valence electrons of tungsten atoms can easily cross the fermi energy level, and the metallicity leads to great reduction of their hardness. Therefore, designing non-metallic tungsten nitride crystal structures seems be a promising way to reach outstanding mechanical properties, such as superhardness.

Based on previous researches, a collaborated research team led by Prof. Jian Sun and Prof. Hui-Tian Wang at Department of Physics, Nanjing University summarized three clues for designing superhard hybrid compounds of transition metal and light elements: the high-pressure stable and ambient-pressure metastable crystal structure, the non-metallic electronic structures, and a large ratio of light elements.

These clues inspired them to design nitrogen-rich tungsten nitrides containing special nitrogen-based basic configurations, such as rings, chains, networks and frameworks, etc. Based on these designing rules and newly developed machine-learning accelerated crystal structure search method, they have successfully predicted a non-metallic nitrogen-rich tungsten nitride h-WN6.

It has a sandwich-like structure, formed by nitrogen armchair-like six-membered ring and tungsten atoms. The electron localization function and Bader charge analysis indicate that h-WN6 is an ionic crystal containing strong N-N covalent bonds. It can be stable at high pressures and metastable at ambient pressure.

Moreover, it has a small indirect energy-gap and abnormal gap broadening behavior under compression. (see the crystal structure, electronic structures and the high pressure behaviors in the attached Figure) More interestingly, h-WN6 is estimated to be the hardest among transition metal nitrides known so far, with a Vickers hardness around 57 GPa and also has a pretty high melting temperature of around 1,900 K. Moreover, their calculations also show that this nitrogen-rich compound can be considered as a potential high-energy-density material because of the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities.

Their work developed a machine learning accelerated crystal structure search method, summarized the designing rules of superhard transition metal light elements compounds, and predicted a superhard and high-energy-density tungsten nitride with good thermal stability. It will stimulate the theoretical design and experimental synthesis of this kind of transition metal materials with potential application value. This will also enrich the family of superhard materials and may be used a reference for understanding the origin of hardness.

###

This work was supported by the Ministry of Science and Technology of the People's Republic of China (2016YFA0300404 and 2015CB921202), the National Natural Science Foundation of China (51372112 and 11574133), the NSF of Jiangsu Province (BK20150012), the Fundamental Research Funds for the Central Universities, the Science Challenge Project (TZ2016001) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) (U1501501).

See the article:

Kang Xia, Hao Gao, Cong Liu, Jianan Yuan, Jian Sun, Hui-Tian Wang, Dingyu Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Science Bulletin, 2018, Vol. 63, No. 13: 817-824 https://www.sciencedirect.com/science/article/pii/S2095927318302494

J. Sun | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2018.05.027

More articles from Materials Sciences:

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

nachricht Researchers develop method to transfer entire 2D circuits to any smooth surface
07.12.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>