Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018

Although machine learning technique gained amazing success in many aspects, its application in crystal structure predictions and materials design is still under developing. Recently, Prof. Jian Sun's group at the Department of Physics, Nanjing University implemented a machine-learning algorithm into the crystal structure search method. They use a machine learning algorithm to fit a model to describe the potential energy surface and use it to filter the crystal structures initially. This can effectively enhance the search efficiency of crystal structure prediction.

On the other hand, hybrid compounds of transition metals and light elements, especially transition metal nitrides have been widely studied for their high incompressibility and bulk modulus. However, superhard (Vickers hardness over 40 GPa) tungsten nitrides have not been found yet.


Crystal structrure and theoretical electronic structures of new W-N phases.

Credit: ©Science China Press

The energy bands contributed by d valence electrons of tungsten atoms can easily cross the fermi energy level, and the metallicity leads to great reduction of their hardness. Therefore, designing non-metallic tungsten nitride crystal structures seems be a promising way to reach outstanding mechanical properties, such as superhardness.

Based on previous researches, a collaborated research team led by Prof. Jian Sun and Prof. Hui-Tian Wang at Department of Physics, Nanjing University summarized three clues for designing superhard hybrid compounds of transition metal and light elements: the high-pressure stable and ambient-pressure metastable crystal structure, the non-metallic electronic structures, and a large ratio of light elements.

These clues inspired them to design nitrogen-rich tungsten nitrides containing special nitrogen-based basic configurations, such as rings, chains, networks and frameworks, etc. Based on these designing rules and newly developed machine-learning accelerated crystal structure search method, they have successfully predicted a non-metallic nitrogen-rich tungsten nitride h-WN6.

It has a sandwich-like structure, formed by nitrogen armchair-like six-membered ring and tungsten atoms. The electron localization function and Bader charge analysis indicate that h-WN6 is an ionic crystal containing strong N-N covalent bonds. It can be stable at high pressures and metastable at ambient pressure.

Moreover, it has a small indirect energy-gap and abnormal gap broadening behavior under compression. (see the crystal structure, electronic structures and the high pressure behaviors in the attached Figure) More interestingly, h-WN6 is estimated to be the hardest among transition metal nitrides known so far, with a Vickers hardness around 57 GPa and also has a pretty high melting temperature of around 1,900 K. Moreover, their calculations also show that this nitrogen-rich compound can be considered as a potential high-energy-density material because of the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities.

Their work developed a machine learning accelerated crystal structure search method, summarized the designing rules of superhard transition metal light elements compounds, and predicted a superhard and high-energy-density tungsten nitride with good thermal stability. It will stimulate the theoretical design and experimental synthesis of this kind of transition metal materials with potential application value. This will also enrich the family of superhard materials and may be used a reference for understanding the origin of hardness.

###

This work was supported by the Ministry of Science and Technology of the People's Republic of China (2016YFA0300404 and 2015CB921202), the National Natural Science Foundation of China (51372112 and 11574133), the NSF of Jiangsu Province (BK20150012), the Fundamental Research Funds for the Central Universities, the Science Challenge Project (TZ2016001) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) (U1501501).

See the article:

Kang Xia, Hao Gao, Cong Liu, Jianan Yuan, Jian Sun, Hui-Tian Wang, Dingyu Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Science Bulletin, 2018, Vol. 63, No. 13: 817-824 https://www.sciencedirect.com/science/article/pii/S2095927318302494

J. Sun | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2018.05.027

More articles from Materials Sciences:

nachricht Carbon fiber can store energy in the body of a vehicle
18.10.2018 | Chalmers University of Technology

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Gravitational Waves Could Shed Light on Dark Matter

22.10.2018 | Physics and Astronomy

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>