Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018

Although machine learning technique gained amazing success in many aspects, its application in crystal structure predictions and materials design is still under developing. Recently, Prof. Jian Sun's group at the Department of Physics, Nanjing University implemented a machine-learning algorithm into the crystal structure search method. They use a machine learning algorithm to fit a model to describe the potential energy surface and use it to filter the crystal structures initially. This can effectively enhance the search efficiency of crystal structure prediction.

On the other hand, hybrid compounds of transition metals and light elements, especially transition metal nitrides have been widely studied for their high incompressibility and bulk modulus. However, superhard (Vickers hardness over 40 GPa) tungsten nitrides have not been found yet.


Crystal structrure and theoretical electronic structures of new W-N phases.

Credit: ©Science China Press

The energy bands contributed by d valence electrons of tungsten atoms can easily cross the fermi energy level, and the metallicity leads to great reduction of their hardness. Therefore, designing non-metallic tungsten nitride crystal structures seems be a promising way to reach outstanding mechanical properties, such as superhardness.

Based on previous researches, a collaborated research team led by Prof. Jian Sun and Prof. Hui-Tian Wang at Department of Physics, Nanjing University summarized three clues for designing superhard hybrid compounds of transition metal and light elements: the high-pressure stable and ambient-pressure metastable crystal structure, the non-metallic electronic structures, and a large ratio of light elements.

These clues inspired them to design nitrogen-rich tungsten nitrides containing special nitrogen-based basic configurations, such as rings, chains, networks and frameworks, etc. Based on these designing rules and newly developed machine-learning accelerated crystal structure search method, they have successfully predicted a non-metallic nitrogen-rich tungsten nitride h-WN6.

It has a sandwich-like structure, formed by nitrogen armchair-like six-membered ring and tungsten atoms. The electron localization function and Bader charge analysis indicate that h-WN6 is an ionic crystal containing strong N-N covalent bonds. It can be stable at high pressures and metastable at ambient pressure.

Moreover, it has a small indirect energy-gap and abnormal gap broadening behavior under compression. (see the crystal structure, electronic structures and the high pressure behaviors in the attached Figure) More interestingly, h-WN6 is estimated to be the hardest among transition metal nitrides known so far, with a Vickers hardness around 57 GPa and also has a pretty high melting temperature of around 1,900 K. Moreover, their calculations also show that this nitrogen-rich compound can be considered as a potential high-energy-density material because of the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities.

Their work developed a machine learning accelerated crystal structure search method, summarized the designing rules of superhard transition metal light elements compounds, and predicted a superhard and high-energy-density tungsten nitride with good thermal stability. It will stimulate the theoretical design and experimental synthesis of this kind of transition metal materials with potential application value. This will also enrich the family of superhard materials and may be used a reference for understanding the origin of hardness.

###

This work was supported by the Ministry of Science and Technology of the People's Republic of China (2016YFA0300404 and 2015CB921202), the National Natural Science Foundation of China (51372112 and 11574133), the NSF of Jiangsu Province (BK20150012), the Fundamental Research Funds for the Central Universities, the Science Challenge Project (TZ2016001) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) (U1501501).

See the article:

Kang Xia, Hao Gao, Cong Liu, Jianan Yuan, Jian Sun, Hui-Tian Wang, Dingyu Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Science Bulletin, 2018, Vol. 63, No. 13: 817-824 https://www.sciencedirect.com/science/article/pii/S2095927318302494

J. Sun | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2018.05.027

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>