Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using living cells as nanotechnology factories

10.10.2008
In the tiny realm of nanotechnology, scientists have used a wide variety of materials to build atomic scale structures. But just as in the construction business, nanotechnology researchers can often be limited by the amount of raw materials. Now, Biodesign Institute at Arizona State University researcher Hao Yan has avoided these pitfalls by using cells as factories to make DNA based nanostructures inside a living cell.

The results were published in the early online edition of the Proceedings of the National Academy of Sciences.

Yan specializes in a fast-growing field within nanotechnology -- commonly known as structural DNA nanotechnology -- that uses the basic chemical units of DNA, abbreviated as C, T, A, or G, to self-fold into a number of different building blocks that can further self-assemble into patterned structures.

"This is a good example of artificial nanostructures that can be replicated using the machineries in live cells" said Yan. "Cells are really good at making copies of double stranded DNA and we have used the cell like a copier machine to produce many, many copies of complex DNA nanostructures."

DNA nanotechnologists have made some very exciting achievements during the past five to 10 years. But DNA nanotechnology has been limited by the need to chemically synthesize all of the material from scratch. To date, it has strictly been a test tube science, where researchers have developed many toolboxes for making different DNA nanostructures to attach and organize other molecules including nanoparticles and other biomolecules.

"If you need to make a single gram of a DNA nanostructure, you need to order one gram of the starting DNA materials. Scientists have previously used chemical methods to copy branched DNA structures, and there has also been significant work in using long-stranded DNA sequences replicated from cells or phage viruses to scaffold short helper DNA sequences to form 2-D or 3-D objects," said Yan, who is also a professor in the Department of Chemistry and Biochemistry at ASU.

"We have always dreamed of scaling up DNA nanotechnology. One way to scale that it up is to use the cellular system because simple DNA can be replicated inside the cell. We wanted to know if the cell's copy machine could tolerate single stranded DNA nanostructures that contain complicated secondary structures."

To test the nanoscale manufacturing capabilities of cells, Yan and his fellow researchers, Chenxiang Lin, Sherri Rinker and Yan Liu at ASU and their collaborators Ned Seeman and Xing Wang at New York University went back to reproducing the very first branched nanostructure made up of DNA- a cross-shaped, four-arm DNA junction and another DNA junction structure containing a different crossover topology.

To copy these branched DNA nanostructures inside a living cell, the ASU and NYU research team first shipped the cargo inside a bacteria cell. They cut and pasted the DNA necessary to make these structures into a phagemid, a virus-like particle that infects a bacteria cell. Once inside the cell, the phagemid used the cell just like a photocopier machine to reproduce millions of copies of the DNA. By theoretically starting with just a single phagemid infection, and a single milliliter of cultured cells, Yan found that the cells could churn out trillions of the DNA junction nanostructures.

The DNA nanostructures produced in the cells were also found to fold correctly, just like the previously built test tube structures. According to Yan, the results also proved the key existence of the DNA nanostructures during the cell's routine DNA replication and division cycles. "When a DNA nanostructure gets replicated, it does exist and can survive the complicated cellular machinery. And it looks like the cell can tolerate this kind of structure and still do its job. It's amazing," said Yan.

Yan acknowledges that this is just the first step, but foresees there are many interesting DNA variations to consider next. "The fact that the natural cellular machinery can tolerate artificial DNA objects is quite intriguing, and we don't know what the limit is yet."

Yan's group may be able to change and evolve DNA nanostructures and devices using the cellular system and the technology may also open up some possibilities for synthetic biology applications.

"I'm very excited about the future of DNA nanotechnology, but there is a lot of work to be done. An interesting research topic to pursue is the interface of DNA nanostructures with live cells; it is full of opportunities," said Yan.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: DNA DNA nanotechnology DNA sequence atomic scale structures

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>