Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid shock absorbers

08.11.2017

Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites.

At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fact they consist of particles in suspension. Some colloids have remarkable properties: they may stiffen following an impact and absorb surface shocks. This property is of interest for many applications, from bulletproof vests to protective shields for satellites.


Researchers funded by the SNSF have determined how certain liquids stiffen in response to powerful impacts.

Researchers funded by the Swiss National Science Foundation (SNSF) found that how these colloids work can change dramatically in response to very strong impacts. The scientists have also developed a model that makes these properties easier to understand. The work has been published in the journal PNAS.(*)

SNSF professor Lucio Isa and his team at ETH Zurich create so-called two-dimensional colloidal crystals. The crystals consist of silica beads several thousandths of a millimetre in diameter in a mixture of water and glycerine. In collaboration with Chiara Daraio of Caltech (USA) and Stéphane Job at the Institut supérieur de mécanique de Paris, the researchers studied how this type of material absorbs shocks.

The team observed that when the colloidal particles are micrometre-sized, the force and speed of impact change how the shocks are absorbed. Below a certain threshold, the viscosity of the liquid is the determining factor, and classical models describe the phenomenon very well.

"You have to imagine these tiny glass beads in their liquid," says Isa. "During an impact, the beads move and disperse the fluid around them, more or less rapidly depending on its viscosity. The movement of the fluid is what causes the whole thing to stiffen."

When the shock is particularly intense, the liquid no longer flows between the beads, and they deform. "In this situation, the physical properties of the beads strongly influence shock absorption, and the usual equations no longer apply," says Isa.

Impact of a bullet

For the particles to have an effect, the impact must be extremely intense, such as that caused by a firearm or micrometeorites (objects the size of grains of sand capable of hitting satellites at the speed of ten kilometres per second).

"It was not easy to generate impacts of this intensity in the laboratory," explains Isa. To do so, the researchers covered a small percentage of the silica beads with gold. When exposed to pulsed laser light, the gold evaporated, producing a powerful shock wave in the colloid comparable to that caused, say, by the impact of a micrometeorite.
Ultra-high-speed cameras recorded the action through the lens of a microscope.

"Colloids displaying such properties are really interesting materials to study," says Isa. "For instance, they may even be used for the future development of shields protecting satellites against micrometeorite impacts."

This research was conducted at ETH Zurich, Supméca – Institut supérieur de mécanique de Paris and Caltech. The research was funded by the SNSF and by the Metaudible project under the aegis of the French National Research Agency (ANR) and the Fondation de Recherche pour l'Aéronautique et l'Espace (FRAE).

(*) I. Buttinoni et al.: Direct observation of impact propagation and absorption in dense colloidal monolayers. PNAS (2017) doi: 10.1073/pnas.1712266114


Contact

Prof. Lucio Isa
Laboratory for Interfaces, Soft Matter and Assembly
Department of Materials
ETH Zurich
8092 Zurich
Phone: +41 44 633 63 76
E-mail: lucio.isa@mat.ethz.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-171108-press-release-li... 'Image available for media use'
http://www.pnas.org/content/early/2017/10/25/1712266114.short?rss=1 'doi: 10.1073/pnas.1712266114'

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>