Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid-crystal and bacterial living materials self-organize and move in their own way

12.05.2017

Smart glass, transitional lenses and mood rings are not the only things made of liquid crystals; mucus, slug slime and cell membranes also contain them. Now, a team of researchers is trying to better understand how liquid crystals, combined with bacteria, form living materials and how the two interact to organize and move.

"One of the ideas we came up with was materials that live," said Igor S. Aronson, holder of the Huck Chair and Professor of Biomedical Engineering, Chemistry and Mathematics. Living matter, active matter may be self-healing and shape-changing and will convert energy to mechanical motion."


Computer generated model on the top left shows the pattern created by the interaction of bacteria and a nematic liquid crystal. Areas form that concentrate bacteria while others funnel bacteria away creating an absence of bacteria. The image on the right shows the concentration difference of bacteria as the liquid crystal patterns change. Bottom left image shows the changing velocity of the bacteria and the bottom right image shows the changes in concentration of the bacteria. The more bacteria in an area, the faster they move. (Video)

Credit: Aronson's Lab, Penn State

The living material Aronson is exploring using predictive computational models and experiments is composed of a bacterium -- Bacillus subtilis -- that can move quickly using its long flagella and a nematic liquid crystal -- disodium cromoglycate.

Liquid crystals as materials sit somewhere between a liquid and a solid. In this case, the molecules in disodium cromoglycate line up in long parallel rows, but are not fixed in place. Capable of moving, they remain oriented in only one direction unless disturbed.

According to Aronson, this type of liquid crystal closely resembles a straight-plowed field with the ridges the molecules and the furrows the areas in between.

Previously the researchers found that these tiny bacteria in a liquid crystal material can push cargo -- tiny particles -- through the channels in a liquid crystal and move at four times their body length when in small concentrations, but conservatively, at 20 times their body length when in large numbers.

"An emergent property of the combination of a liquid crystal and bacteria is that at about a 0.1 percent-by-volume bacterial concentration we start to see a collective response from the bacteria," said Aronson.

This type of living material is not simply a combination of two components, but the two parts create something with unusual optical, physical or electrical properties. However, there is no direct connection between the bacteria and the liquid. The researchers' computer models showed collective behavior in their system similar to that seen in actual liquid crystal/bacteria combinations.

The predictive computational models for this liquid-crystal bacteria system show a change from straight parallel channels when only a small bacteria population exists, to a more complex, organized, active configuration when bacteria populations are higher. While the patterns are always changing, they tend to form pointer defects -- arrow shapes -- that serve as traps and concentrate bacteria in an area, and triangle defects that direct bacteria away from the area.

Increased bacterial concentration increases the velocity of the bacteria and configurations in areas with higher bacteria population change more rapidly than in areas with fewer bacteria. Aronson and his team looked at actual liquid-crystal living materials in a slightly different way than in the past. They wanted the liquid-crystal thin film to be independent, not touching any surface, so they used a device that created the film -- in a way similar to that used to create large soap bubbles -- and suspended it away from surface contact. This approach showed patterns of defects in the material's structure.

Experiments with thin films of liquid crystals and bacteria produced the same results as the computational models, according to the researchers.

Another effect the researchers found was that when oxygen was removed from the system, the action of the living material stopped. Bacillus subtilis is usually found in places with oxygen, but can survive in environments devoid of oxygen. The bacteria in the living material did not die, they simply stopped moving until oxygen was once again present.

The researchers reported in Physical Review X that their "findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter." Because some biological substances like mucus and cell membranes are sometimes liquid crystals, this research may produce knowledge of how these biological substances interact with bacteria and might provide insight on diseases due to bacterial penetration in mucus.

###

Also working on this project were Mikhail M. Genkin, doctoral student in engineering science and applied mathematics, Northwestern University; Andrey Sokolov, materials scientist, Argonne National Laboratory; and Oleg D. Lavrentovich, Trustees Research Professor, Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University.

The U.S. Department of Energy supported this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>