Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light transport for times of crisis

13.11.2008
Madrid Institute of Advanced Studies in Materials, IMDEA Materials, to form part of strategic national consortium awarded CENIT programme to research new magnesium-based transport technologies.

The MAGNO programme is a national consortium with a total budget of €30 million over 4 years, made up of 12 companies (4 corporations and 8 SMEs) and 11 technology centres. It has been set up to promote and develop new technologies based on magnesium alloys.

This CENIT, a Spanish acronym standing for Strategic National Consortium for Technical Research, is led by the Antolín Group, a leading multinational in the design and production of car interior components and modules. The high-tech investment programme will give a boost to the metal industry in Spain, as well as making the country one of the leaders in an expanding market of the future.

IMDEA Materials will contribute to the consortium by carrying out research aiming to improve the mechanical behavior at high temperature and high strain rate (shock conditions) of currently used cast and forged Mg alloys, by optimising casting processes and by developing novel Mg alloys with enhanced mechanical performance.

At a time of record-breaking oil prices, light transport is no longer a luxury but a necessity. The fuel saving would not only ease the strain on people's wallets, it would also significantly reduce gas emissions, with the resulting benefit for the environment.

Magnesium is one of the lightest metals. Its low density, 1.7 g/cm3, makes it a key material in reducing the weight of cars and it could replace certain parts made of steel (7.8 g/cm3) or aluminium (2.7 g/cm3). Moreover, it is found in abundance in the Earth's crust and is easy to recycle and machine. Its specific mechanical resistance is excellent, even exceeding that of steel.

Magnesium was first isolated in 1808 by Sir Humphrey Davy. Due to its high inflammability in powder form, until the end of the 19th century it was used exclusively to produce artificial light or as a photographic flash. However, its use soon extended to the transport industry and by 1939 the Volkswagen Beetle included 20 kg of magnesium. Today, China is the largest producer of magnesium in the world and production costs have reduced dramatically, now being comparable to aluminium.

However, large-scale commercial use of magnesium in consumer vehicles is still some way off, as its mechanical resistance to high temperatures and corrosion has still not been improved sufficiently. For this reason, magnesium cannot be used to manufacture parts located on the vehicle exterior or in areas close to the engine. Furthermore, at present most parts are made through casting because, due to its hexagonal structure, magnesium is difficult to shape.

This project falls within the strategic lines of applied research that the IMDEA Materials Foundation has defined in its scientific programme.

As the diagram shows, one of IMDEA Materials' main lines of research is Advanced Metallic Alloys and in particular alloys based on light metals such as magnesium. This line has a team of world-class researchers, who will be working on this ambitious project over the next four years.

IMDEA | alfa
Further information:
http://www.imdea.org

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>