Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light switch: Scientists develop method to control nanoscale manipulation in high-powered microscopes

12.10.2018

Researchers from Japan have taken a step toward faster and more advanced electronics by developing a way to better measure and manipulate conductive materials through scanning tunneling microscopy.

The team published their results in July in Nano Letters, an American Chemical Society journal. Scientists from the University of Tokyo, Yokohama National University, and the Central Research Laboratory of Hamamatsu Photonics contributed to this paper.


Prof. Jun Takeda (left) and Katsumasa Yoshioka (right)

Credit: Yokohama National University

Scanning tunneling microscopy (STM) involves placing a conducting tip close to the surface of the conductive material to be imaged. A voltage is applied through the tip to the surface, creating a "tunnel junction" between the two through which electrons travel.

The shape and position of the tip, the voltage strength, and the conductivity and density of the material's surface all come together to provide the scientist with a better understanding of the atomic structure of the material being imaged. With that information, the scientist should be able to change the variables to manipulate the material itself.

Precise manipulation, however, has been a problem - until now.

The researchers designed a custom terahertz pulse cycle that quickly oscillates between near and far fields within the desired electrical current.

"The characterization and active control of near fields in a tunnel junction are essential for advancing elaborate manipulation of light-field-driven processes at the nanoscale," said Jun Takeda, a professor in the department of physics in the Graduate School of Engineering at Yokohama National University. "We demonstrated that desirable phase-controlled near fields can be produced in a tunnel junction via terahertz scanning tunneling microscopy with a phase shifter."

According to Takeda, previous studies in this area assumed that the near and far fields were the same - spatially and temporally. His team examined the fields closely and not only identified that there was a difference between the two, but realized that the pulse of fast laser could prompt the needed phase shift of the terahertz pulse to switch the current to the near field.

"Our work holds enormous promise for advancing strong-field physics in nano-scale solid state systems, such as the phase change materials used for optical storage media in DVDs and Blu-ray, as well as next-generation ultrafast electronics and microscopies," Takeda said.

###

Yokohama National University (YNU or Yokokoku) is a Japanese national university founded in 1949. YNU provides students with a practical education utilizing the wide expertise of its faculty and facilitates engagement with the global community. YNU's strength in the academic research of practical application sciences leads to high-impact publications and contributes to international scientific research and the global society. For more information, please see: http://www.ynu.ac.jp/english/

Media Contact

Akiko Tsumura
kenkyu-kikaku@ynu.ac.jp
81-453-393-213

Akiko Tsumura | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acs.nanolett.8b02161

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>