Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's roll: Material for polymer solar cells may lend itself to large-area processing

15.08.2016

'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom

For all the promise they have shown in the lab, polymer solar cells still need to "get on a roll" like the ones employed in printing newspapers so that large sheets of acceptably efficient photovoltaic devices can be manufactured continuously and economically. Polymer solar cells offer advantages over their traditional silicon-based counterparts in numerous ways, including lower cost, potentially smaller carbon footprint and a greater variety of uses.


A demonstration solar park based on polymer solar cells at the Technical University of Denmark in Roskilde, Denmark.

Credit: DTU Energy

New research results reported by an international team led by the National Institute of Standards and Technology (NIST) indicate that the "sweet spot" for mass-producing polymer solar cells--a tantalizing prospect for decades--may be far larger than dictated by the conventional wisdom. In experiments using a mock-up of a high-volume, roll-to-roll processing method, the researchers produced polymer-based solar cells with a "power conversion efficiency" of better than 9.5 percent, just shy of the minimum commercial target of 10 percent.

That's almost as good as the small-batch devices made in the lab with spin-coating, a method that produces high-quality films in the laboratory but is commercially impractical since it wastes up to 90 percent of the initial ink.

Somewhat surprising to the researchers, their mass-produced versions exhibited molecular packing and texture that only slightly resembled that of lab-made varieties, which at their best convert about 11 percent of incident sunlight into electrical energy.

"The 'rule of thumb' has been that high-volume polymer solar cells should look just like those made in the lab in terms of structure, organization and shape at the nanometer scale," said Lee Richter, a NIST physicist who works on functional polymers. "Our experiments indicate that the requirements are much more flexible than assumed, allowing for greater structural variability without significantly sacrificing conversion efficiency."

"Efficient roll-to-roll fabrication is key to achieving the low-cost, high-volume production that would enable photovoltaics to scale to a significant fraction of global energy production," explained He Yan, a collaborator from Hong Kong University of Science and Technology.

The team experimented with a coating material composed of a fluorinated polymer and a fullerene (also known as a "buckyball"). Going by the technical name PffBT4T-2OD, the polymer is attractive for scaled production--achieving a reported power conversion efficiency of more than 11 percent. Importantly, it can be applied in relatively thick layers--conducive to roll-to-roll processing.

However, the top-performing solar cells were produced with the spin-coating method, a small-batch process. In spin coating, the fluid is dispensed onto the center of a disk or other substrate, which rotates to spread the material until the desired coating thickness is achieved. Besides generating lots of waste, the process is piecemeal--rather than continuous--and substrate size is limited.

So the research team opted to test commercially relevant coating methods, especially since PffBT4T-2OD can be applied in relatively thick layers of 250 nanometers and more, or roughly the size of a large virus. They started with blade-coating--akin to holding a knife edge at a fraction of a hair's breadth above a treated glass substrate as it slides by, painting the PffBT4T-2OD onto the substrate.

A series of X-ray-based measurements revealed that the temperature at which the PffBT4T-2OD was applied and dried significantly influenced the resultant coating's material structure--especially the orientation, spacing and distribution of the crystals that formed.

The substrates blade-coated at 90 degrees Celsius (194 degrees F) were the highest performing, achieving power conversion efficiencies that topped 9.5 percent. Surprisingly, at the nanometer level, the end products differed significantly from the spin-coated "champion" devices made in the lab. Detailed real-time measurements during both blade-coating and spin-coating revealed the different structures arose from the rapid cooling during spin-coating versus the constant temperature during blade-coating.

"Real-time measurements were critical to developing a proper understanding of the film formation kinetics and ultimate optimization," said Aram Amassian, a collaborator from Saudi Arabia's King Abdullah University of Science and Technology.

Encouraged by the results, the team performed preliminary measurements of PffBT4T-2OD coating formed on the surface of a flexible plastic sheet. The coating was applied on NIST's slot-die roll-to-roll coating line, directly mimicking large-scale production. Measurements confirmed that the material structures made with blade-coating and those made with slot-die-coating were nearly identical when processed at the same temperatures.

"It's clear that the type of processing method used influences the shape of the domains and their size distribution in the final coating, but these distinctly different morphologies do not necessarily undermine performance," said Harald Ade, a collaborator from North Carolina State University. "We think these findings provide important clues for designing polymer solar cells optimized for roll-to-roll processing."

###

Article: H.W. Ro, J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, L.K. Jagadamma, A. Amassian, Y. Liu and H. Yan. 2016. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy & Environmental Science. Published August 2, 2016. DOI: 10.1039/c6ee01623e

Media Contact

Mark Bello
mark.bello@nist.gov
301-975-3776

 @usnistgov

http://www.nist.gov 

Mark Bello | EurekAlert!

Further reports about: NIST coating polymer-based solar cells solar cells

More articles from Materials Sciences:

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>