Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest 'green' packing material? Mushrooms

28.07.2010
Packing foam now entering the marketplace is engineered from mushrooms and agricultural waste

A new packing material that grows itself is now appearing in shipped products across the country.

The composite of inedible agricultural waste and mushroom roots is called Mycobond™, and its manufacture requires just one eighth the energy and one tenth the carbon dioxide of traditional foam packing material.

And unlike most foam substitutes, when no longer useful, it makes great compost in the garden.

The technology was the brainchild of two former Rensselaer Polytechnic Institute undergraduates, Gavin McIntyre and Eben Bayer, who founded Ecovative Design of Green Island, N.Y., to bring their idea into production.

"We don't manufacture materials, we grow them," says McIntyre. "We're converting agricultural byproducts into a higher-value product."

Because the feedstock is based on renewable resources, he adds, the material has an economic benefit as well: it is not prone to the price fluctuations common to synthetic materials derived from such sources as petroleum. "All of our raw materials are inherently renewable and they are literally waste streams," says McIntyre. "It's an open system based on biological materials."

With support from NSF, McIntyre and Bayer are developing a new, less energy-intensive method to sterilize their agricultural-waste starter material--a necessary step for enabling the mushroom fibers, called mycelia, to grow. McIntyre and Bayer are replacing a steam-heat process with a treatment made from cinnamon-bark oil, thyme oil, oregano oil and lemongrass oil.

The sterilization process, which kills any spores that could compete with Ecovative's mushrooms, is almost as effective as the autoclaving process used to disinfect medical instruments and will allow the Mycobond™ products to grow in the open air, instead of their current clean-room environment.

"The biological disinfection process simply emulates nature," says McIntyre, "in that it uses compounds that plants have evolved over centuries to inhibit microbial growth. The unintended result is that our production floor smells like a pizza shop."

Much of the manufacturing process is nearly energy-free, with the mycelia growing around and digesting agricultural starter material--such as cotton seed or wood fiber--in an environment that is both room-temperature and dark. Because the growth occurs within a molded plastic structure (which the producers customize for each application), no energy is required for shaping the products.

Once fully formed, each piece is heat-treated to stop the growth process and delivered to the customer--though with the new, easier, disinfection treatment, Bayer and McIntyre are hoping the entire process can be packaged as a kit, allowing shipping facilities, and even homeowners, to grow their own Mycobond™ materials.

Based on a preliminary assessment McIntyre and Bayer conducted under their Phase I NSF SBIR award, the improvements to the sterilization phase will reduce the energy of the entire manufacturing process to one fortieth of that required to create polymer foam.

"This project is compelling because it uses innovative technology to further improve Ecovative's value, while also providing the environmental benefits that NSF is looking for," said Ben Schrag, the NSF program officer who oversees Ecovative's Small Business Innovation Research (SBIR) award. "The traction that they have gotten with their early customers demonstrates how companies can build strong businesses around products whose primary competitive advantage lies in their sustainability."

In addition to the packaging product, called EcoCradle™, Ecovative has developed a home insulation product dubbed greensulate™. Comparable in effectiveness to foam insulation, it has the added benefit of being flame retardant.

Ecovative is already producing custom protective packaging products for several Fortune 500 companies, though they are leveraging the new disinfection process to produce turnkey systems that they plan to deploy to off-site customers and do-it-yourself homeowners by 2013.

In addition to NSF, Evocative has received support from the USDA Agricultural Research Service, the Environmental Protection Agency, and the New York State Energy Research and Development Authority.

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht To improve auto coatings, new tests do more than scratch the surface
21.09.2018 | National Institute of Standards and Technology (NIST)

nachricht World's first passive anti-frosting surface fights ice with ice
18.09.2018 | Virginia Tech

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>