Laser welding of textiles: Prototype parameters determined

In addition to that, they have great pressure resistance and tensile strength. What is more, the opportunity for 3-D shaping opens the possibility of creating completely new types of products.

Scientists at the textile research centre of the Hohenstein Institute in Boennigheim, have worked out key process parameters for the prototype of a laser sewing machine, the TexWeld 140 made by the Prolas company.

In conjunction with his Bachelor's thesis, Philipp Kirst of Albstadt-Sigmaringen University, worked with the project leader, Dr. Edith Claßen and her team in defining threshold values for temperature, speed and conveyor roll intervals as well as the use of absorbers while welding different textile materials.

In order to assess the quality of the seams beyond inspecting them visually, a comprehensive series of tests of the fusion zones were carried out with the help of a scanning electron microscope. Textile technology tests were also required primarily to test tear and water resistance.

A final showpiece was used to demonstrate the diverse possibilities opened by the laser welding of thermoplastic textiles of synthetic fibres or laminated materials. A surgical smock made of three-layered, laminated fabric featuring different straight and round seam structures revealed the full design spectrum of modern laser welding technology.

Dr. Claßen's team (e.classen@hohenstein.de) will be investigating the possibilities of welding fabric blends in the coming months.

Media Contact

Rose-Marie Riedl idw

More Information:

http://www.hohenstein.de

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors