Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser welding of textiles: Prototype parameters determined

01.07.2009
Welding fabrics has a number of advantages over conventional sewing: welded seams have no visible start and end points; and they are flexible and watertight.

In addition to that, they have great pressure resistance and tensile strength. What is more, the opportunity for 3-D shaping opens the possibility of creating completely new types of products.

Scientists at the textile research centre of the Hohenstein Institute in Boennigheim, have worked out key process parameters for the prototype of a laser sewing machine, the TexWeld 140 made by the Prolas company.

In conjunction with his Bachelor's thesis, Philipp Kirst of Albstadt-Sigmaringen University, worked with the project leader, Dr. Edith Claßen and her team in defining threshold values for temperature, speed and conveyor roll intervals as well as the use of absorbers while welding different textile materials.

In order to assess the quality of the seams beyond inspecting them visually, a comprehensive series of tests of the fusion zones were carried out with the help of a scanning electron microscope. Textile technology tests were also required primarily to test tear and water resistance.

A final showpiece was used to demonstrate the diverse possibilities opened by the laser welding of thermoplastic textiles of synthetic fibres or laminated materials. A surgical smock made of three-layered, laminated fabric featuring different straight and round seam structures revealed the full design spectrum of modern laser welding technology.

Dr. Claßen's team (e.classen@hohenstein.de) will be investigating the possibilities of welding fabric blends in the coming months.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht World's first passive anti-frosting surface fights ice with ice
18.09.2018 | Virginia Tech

nachricht A novel approach of improving battery performance
18.09.2018 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>