Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of industry links "keeping Indian nanotech small"

30.09.2008
India's expanding nanotechnology research is not translating into market products due to weak links between Indian scientific institutes and industry, experts have cautioned. The problems were discussed at a gathering of India's top scientists and representatives of the Federation of Indian Chambers of Commerce and Industry working on nanotechnology in Delhi.

Other problems cited include an absence of information about groups working in the sector and the domestic industry's reluctance to manufacture large quantities of nanomaterials proven to have commercial application.

India has more than 30 industries and 50 institutes engaged in nanotech research and development, with most efforts focusing on chip design, nanomedicine and nanomaterials. Nanotechnology has potential uses in drug delivery, diagnostic kits, improved water filters and sensors, and reducing pollution from vehicles.

Since the launch of a US$250 million five-year national nanotech mission in 2007, India has seen a rise in the number of scientists working in the field and research publications, said V. S. Ramamurthy, former secretary of India's Department of Science and Technology and currently on the board of the Indian Institute of Technology in Delhi.

The national mission aims to make India a global hub by setting up clusters of research groups in the sector (see "India looks to nanotechnology to boost agriculture" (www.scidev.net/en/news/india-looks-to-nanotechnology-to-boost-agriculture.html) and "Preparing for take-off: Indian Nanotechnology" (www.scidev.net/en/features/preparing-for-takeoff-indian-nanotechnology.html)).

But there has been no corresponding increase in nanotech products in the marketplace. India needs to work on turning its laboratory research findings into commercially viable products that are either globally competitive or locally relevant, said Ramamurthy. "We need to evolve synergies and strategies so that the strengths in the labs are converted into strengths in the marketplace," he said.

C. N. R. Rao, chairman of the Scientific Advisory Committee to India's Prime Minister, suggested Indian scientists and industry should work on 'hot' emerging technologies with tremendous potential, which are attracting the interest of researchers worldwide. These include use of nano-scale particles of graphene, a one atom thick layer of carbon molecules that form the basic structure of graphites. The material is one of the strongest known and has uses in microelectronics and tremendous capacity to absorb the greenhouse gas carbon dioxide.

Other technologies include 'nano' zinc oxide that can be used in lasers, transistors and photovoltaics, and gallium nitride, a chemical that has applications in making cheaper, longer-lasting bulbs and torches.

Rao also suggested India should work on 'nano' forms of currently known materials that can throw up exciting applications.

Delegates at the meeting also pointed out that India does not have a systematic information base on all scientists.

Ajay Sood, professor of physics at the Indian Institute of Science in Bangalore said, "An information map on interested industry and academics is very much needed; an information platform that is easily accessible and can be updated."

Quelle: Science and Development Network (SciDevNet)

| SciDevNet
Further information:
http://www.kooperation-international.de
http://www.scidev.net/en/news/lack-of-industry-links-keeping-indian-nanotech-sma.html

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>