Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab-on-a-chip realizes potential

17.01.2014
A portable instrument that replaces a full-size laboratory provides accurate multi-element analysis in less than a minute

Engineers from the A*STAR Institute of Materials Research and Engineering and colleagues at the University of Basel, Switzerland, have designed and developed a compact, portable analytical instrument that can detect multiple ions and molecules down to a level of 300 parts per billion (ppb) in less than a minute (1).


Analyses of liquid samples that once required a full-sized laboratory can now be completed on a disposable plastic chip equipped with narrow fluidic channels and tiny sensors.
Copyright : 2013 A*STAR Institute of Materials Research and Engineering

The machine, based on lab-on-a-chip technology, needs only drop-sized liquid samples. The analysis is very quick, precise and sensitive, and can be performed remotely as no direct contact with the solution is necessary. As such, the device has widespread potential applications in the water, food and beverage, agriculture, environmental, pharmaceutical and medical industries.

“The instrument is now ready for commercialization,” says Kambiz Ansari, who led the research. “In this well-studied field, it is one of only a handful of actual lab-on-a-chip instruments reported so far.”

The easy-to-operate machine, which weighs only 1.2 kg, combines microchip electrophoresis (MCE) with a sensing technology known as a dual capacitively-coupled contactless conductivity detector (dC4D). The system first uses electrophoresis to separate ions and then detects the ions using dC4D. All analyses are performed in microfluidic channels consisting of capillaries inside polycarbonate plastic chips that are narrower than a human hair.

The beauty of the dC4D technology is its simplicity: it relies on remote conductivity measurements via a pair of electrodes. One electrode sends radio-frequency signals through a channel to the second electrode, and the signal received is read by a computer. Because the ions have charge, their resistance drops as they pass through the microfluidic channel, resulting in sudden peaks. Specially designed software then analyzes the data to provide both qualitative and quantitative information.

The instrument has two access compartments (see image). The front compartment houses a plastic chip and a replaceable cartridge detector for the testing; both are designed to eliminate noise. The back compartment houses the electronics and software, the data acquisition card and a battery that powers the instrument for up to 10 hours.

The researchers tested the instrument’s capability to measure inorganic ions in water, rabbit blood and human urine, as well as organic and inorganic acids in fruit juice. They assessed its accuracy against standard methods.

“We have been approached about licensing the technology by several companies active in clinical analyses and in the ornamental fish farm industry,” Ansari says. “And, we are hoping to further develop our system to achieve detection levels lower than 1 ppb by pre-concentrating the samples; we are also planning to introduce nanofluidics into the dC4D system.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Ansari, K., Ying, J. Y. S., Hauser, P. C., de Rooij, N. F. & Rodriguez, I. A portable lab-on-a-chip instrument based on MCE with dual top–bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Electrophoresis 34, 1390–1399 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>