Key Milestone Reached on Road to Graphene-Based Electronic Devices

Graphene is a 2-dimensional layer of tightly bound carbon atoms arranged in hexagonal arrays. Sheets of graphene are the building blocks of graphite. Due to its phenomenal electronic properties, graphene has been considered as a leading material for next generation electronic devices in the multibillion dollar semiconductor industry.

Using a process called silicon sublimation, EOC researchers David Snyder and Randy Cavalero thermally processed silicon carbide wafers in a physical vapor transport furnace until the silicon migrated away from the surface, leaving behind a layer of carbon that formed into a one- to two-atom-thick film of graphene on the wafer surface. Achieving 100mm graphene wafers has put the Penn State EOC in a leading position for the synthesis of ultra-large graphene and graphene-based devices.

With the support of the Naval Surface Warfare Center, EOC researchers are initially focusing on graphene materials to improve the transistor performance in various radio frequency (RF) applications. According to EOC materials scientist Joshua Robinson, Penn State is developing graphene device processing to enhance graphene transistor performance and has fabricated RF field effect transistors on 100mm graphene wafers.

Another goal of the Penn State researchers is to improve the electron mobility of the Si-sublimated wafers to nearer the theoretical limit, approximately 100 times faster than silicon. That will require improvements in the material quality and device design, says Robinson, but there is significant room for improvements in growth and processing, he believes.

In addition to silicon sublimation, EOC researchers Joshua Robinson, Mark Fanton, Brian Weiland, Kathleen Trumbull, and Michael LaBella are developing the synthesis and device fabrication of graphene on silicon using a non-sublimation route as a means to achieve wafer diameters exceeding 200mm, a necessity for integrating graphene into the existing semiconductor industry. Graphene has the potential to enable terahertz computing at processor speeds 100 to 1000 times faster than silicon.

First discovered in 2004, graphene is now being studied worldwide for electronics, displays, solar cells, sensors, and hydrogen storage. With its remarkable physical, chemical, and structural properties, graphene promises to become a key material for 21st century technology.

The Materials Research Institute coordinates the research of more than 200 materials scientists at Penn State. The Millennium Science Complex, now under construction, is a $225M facility for materials and life sciences research scheduled to open at University Park in summer 2011. Visit MRI on the Web at www.mri.psu.edu.

EOC Contact: Joshua Robinson, Ph.D., jrobinson@psu.edu

Media Contact

Joshua Robinson Newswise Science News

More Information:

http://www.psu.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors