Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jewel-toned organic phosphorescent crystals: A new class of light-emitting material

15.02.2011
Pure organic compounds that glow in jewel tones could potentially lead to cheaper, more efficient and flexible display screens, among other applications.

University of Michigan researcher Jinsang Kim and his colleagues have developed a new class of material that shines with phosphorescence---a property that has previously been seen only in non-organic compounds or organometallics.

Kim and his colleagues made metal-free organic crystals that are white in visible light and radiate blue, green, yellow and orange when triggered by ultraviolet light. By changing the materials' chemical composition, the researchers can make them emit different colors.

The new luminous materials, or phosphors, could improve upon current organic light-emitting diodes (OLEDs) and solid-state lighting. Bright, low-power OLEDs are used in some small screens on cell phones or cameras. At this time, they aren't practical for use in larger displays because of material costs and manufacturing issues.

The OLEDs of today aren't 100 percent organic, or made of carbon compounds. The organic materials used in them must be spiked with metal to get them to glow.

"Purely organic materials haven't been able to generate meaningful phosphorescence emissions. We believe this is the first example of an organic that can compete with an organometallic in terms of brightness and color tuning capability," said Kim, an associate professor of materials science and engineering, chemical engineering, macromolecular science and engineering, and biomedical engineering.

This work is newly published online in Nature Chemistry.

The new phosphors exhibit "quantum yields" of 55 percent. Quantum yield, a measure of a material's efficiency and brightness, refers to how much energy an electron dissipates as light instead of heat as it descends from an excited state to a ground state. Current pure organic compounds have a yield of essentially zero.

In Kim's phosphors, the light comes from molecules of oxygen and carbon known as "aromatic carbonyls," compounds that produce phosphorescence, but weakly and under special circumstances such as extremely low temperatures. What's unique about these new materials is

that the aromatic carbonyls form strong halogen bonds with halogens in the crystal to pack the molecules tightly. This arrangement suppresses vibration and heat energy losses as the excited electrons fall back to the ground state, leading to strong phosphorescence.

"By combining aromatic carbonyls with tight halogen bonding, we achieve phosphorescence that is much brighter and in practical conditions," said Onas Bolton, a co-author of this paper who recently received his Ph.D. in Materials Science and Engineering.

This new method offers an easier way to make high-energy blue organic phosphors, which are difficult to achieve with organometallics.

Organic light emitting diodes are lighter and cheaper to manufacture than their non-organic counterparts, which are made primarily of ceramics. Today's OLEDs still contain small amounts of precious metals, though. These new compounds can bring the price down even further, because they don't require precious metals. They're made primarily of inexpensive carbon, oxygen, chlorine and bromine.

"This is in the beginning stage, but we expect that it will not be long before our simple materials will be available commercially for device applications," Kim said. "And we expect they will bring a big change in the LED and solid-state lighting industries because our compounds are very cheap and easy to synthesize and tune the chemical structure to achieve different colors and properties."

Former doctoral student Kangwon Lee discovered the unique properties of these materials while developing a biosensor---a compound that detects biological molecules and can be used in medical testing and environmental monitoring. The phosphors have applications in this area as well. After Lee's discovery, Bolton developed the metal-free pure-organic phosphors.

The paper is titled "Activating efficient phosphorescence from purely-organic materials by crystal design." In addition to Kim, Bolton, and Lee, other contributors are: former postdoctoral researcher Hyong-Jun Kim in the Department of Materials Science and Engineering and recent Chemical Engineering graduate Kevin Y. Lin. This work is partly funded by the National Science Foundation and the National Research Foundation of Korea.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

For more information:
Jinsang Kim: http://www.mse.engin.umich.edu/people/faculty/kim
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments, numerous research centers and expansive entrepreneurial programs. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference. Find out more at http://www.engin.umich.edu/.

EDITORS: Images available at: http://ns.umich.edu/Releases/2011/Feb11/phosphor.html

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

Automated adhesive film placement and stringer integration for aircraft manufacture

15.11.2018 | Materials Sciences

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>