Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative combination of hard and soft materials improves adhesion to rough surfaces

11.09.2018

Adhesion is involved whenever industrial components are moved to and from without any residues being left behind. But the surfaces of these objects are never completely smooth. Even those surfaces that appear smooth to the human eye tend to be rough when observed under a microscope. Scientists at the Leibniz Institute for New Materials developed a new adhesive structure so that adhesion, even to these types of rough surfaces, can be reliably provided. They combined hard and soft materials within this structure. They determined that the combination of hard and soft materials adheres significantly better to rough surfaces compared to structures produced from only a single soft material.

As a result, industrial handling processes can be improved and made safer, and that is not all. The materials are also promising in terms of on-skin applications, such as self-adhesive wound closures or “wearables” - networked computers that can be applied directly to the skin.


The large-scale model shows basic principle and structure of the new adhesives, where soft materials (yellow) are applied to harder materials.

Source: Iris Maurer; free within this press release

The scientists presented their findings in the renowned scientific journal Applied Materials &Interfaces. Co-author René Hensel is now going to receive the Adhesion Innovation Award in recognition of this publication. This award is co-organized by EURADH (European Adhesion Conference) and FEICA (Association of the European Adhesive & Sealant Industry).

As part of their investigations, the research scientists developed two-millimeter pillars as a model system and brought these into contact with rough surfaces. The measured force required to peel the pillar away again is the measure of the adhesion.

... more about:
»INM »adhesion »coating »pillars »soft materials »surfaces

“The pillars that we used were made of a hard material but their ends had a layer of soft plastic. In order to peel away this pillar, we needed to apply a force that was five times greater compared to peeling away a pillar composed entirely of the soft material. Therefore, it clearly adheres better,” explains René Hensel, the Deputy Head of the Functional Microstructures program division.

The research scientists established during the investigations that the quality of adhesion corresponds to the softness and thinness of the coating applied to the ends of the pillars. The softer the material, the better its ability to adapt to rough surfaces. The fact that adhesive strength correlates to how thin the coating is goes hand in hand with the delayed formation of cracks during contact: The adhesive structure detaches from the surface whenever a crack forms.

These cracks take longer to form due to reduced stress peaks. As a result, cracks and detachment only occur under higher loads. “Surprisingly, the thinner the coating is, the more pronounced this phenomenon,” adds Hensel. Adhesion is also affected by the shape - how two materials of varying hardness are combined. A rounded boundary layer between both materials improves adhesion. This also appears to affect the formation of cracks.

The thickness of the soft coating should simultaneously match the degree of roughness: “The surface of woodchip wallpaper is far rougher than skin, for instance, so in order for something to adhere to woodchip wallpaper, a much thicker soft coating must be selected compared to adhesion to skin,” says Hensel. The research scientists are currently very interested in adhesion to skin. This is central to future research as it appears to play a particularly important role in the development of “wearables” as well as for treating wounds.

Wissenschaftliche Ansprechpartner:

Your expert at INM:

Dr. René Hensel
Deputy Head Functional Microstructures
Phone: +49681-9300-390
rene.hensel@leibniz-inm.de

Originalpublikation:

Sarah C. L. Fischer, Eduard Arzt, and René Hensel, „Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates”, ACS Appl. Mater. Interfaces, 2017, 9 (1), pp 1036–1044, DOI: 10.1021/acsami.6b11642; https://pubs.acs.org/doi/10.1021/acsami.6b11642

Dr. Carola Jung | idw - Informationsdienst Wissenschaft
Further information:
http://www.inm-gmbh.de

Further reports about: INM adhesion coating pillars soft materials surfaces

More articles from Materials Sciences:

nachricht Scientists create a nanomaterial that is both twisted and untwisted at the same time
16.09.2019 | University of Bath

nachricht New metamaterial morphs into new shapes, taking on new properties
12.09.2019 | California Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>