Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indications of the origin of the Spin Seebeck effect discovered

07.09.2015

Thermally excited magnetic waves enable generation of electricity using insulators

The recovery of waste heat in all kinds of processes poses one of the main challenges of our time to making established processes more energy-efficient and thus more environmentally friendly. The Spin Seebeck effect (SSE) is a novel, only rudimentarily understood effect, which allows for the conversion of a heat flux into electrical energy, even in electrically non-conducting materials.

A team of physicists at Johannes Gutenberg University Mainz (JGU), the University of Konstanz, the University of Kaiserslautern, and the Massachusetts Institute of Technology (MIT) have now succeeded in identifying the origin of the Spin Seebeck effect. By the specific investigation of the material- and temperature-dependence of the effect, the German and American researchers were able to show that it exhibits a characteristic length scale attributable to its magnetic origin.

This finding now allows for the advancement of this long-time controversial effect in terms of first applications. The resulting research paper was published in the scientific journal Physical Review Letters, with a fellow of the JGU-based Graduate School of Excellence "Materials Science in Mainz" (MAINZ) as first author.

The Spin Seebeck effect represents a so-called spin-thermoelectric effect, which enables the conversion of thermal energy into electrical energy. Contrary to conventional thermoelectric effects it also enables the recovery of heat energy in magnetic insulators in combination with a thin metallic layer.

Owing to this characteristic, it was assumed that the effect originates from thermally excited magnetic waves. The currently employed method of measurement, which makes use of a second metallic layer converting these magnetic waves into a measurable electrical signal, has so far not been able to allow for a distinct assignment of experimentally detected signals.

By measuring the effect for different material thicknesses in the range of a few nanometers up to several micrometers as well as for different temperatures, the scientists have found characteristic behavior. In thin films the signal amplitude increases with increasing material thickness and eventually saturates after exceeding a sufficient thickness.

In combination with the detected enhancement of this critical thickness at low temperatures, the agreement with the theoretical model of thermally excited magnetic waves developed at Konstanz could be demonstrated. With these results, the researchers were able for the first time to reveal a direct relation between the assumed thermally excited magnetic waves and the effect.

"This result provides us with an important building block of the puzzle of the comprehension of this new, complex effect, unambiguously demonstrating its existence," said Andreas Kehlberger, Ph.D. student at Johannes Gutenberg University Mainz and first author of the publication.

"I am very pleased that this exciting result emerged in a cooperation of a doctoral candidate out of my group at the Graduate School of Excellence 'Materials Science in Mainz' together with co-workers from Kaiserslautern and our colleagues from Konstanz, with whom we collaborate within the Priority Program 'Spin Caloric Transport' funded by the German Research Foundation (DFG)," emphasized Professor Mathias Kläui, director of the MAINZ Graduate School of Excellence based at Mainz University.

"It shows that complex research is only possible in teams, for instance with funding by the German Federal Ministry of Education and Research (BMBF) through the Mainz-MIT Seed Fund."

The MAINZ Graduate School of Excellence was originally approved as part of the Federal and State Excellence Initiative in 2007 and received a five-year funding extension in the second round in 2012 – a tremendous boost for the Mainz-based materials scientists and for the sponsorship of young researchers at JGU.

The MAINZ Graduate School consists of work groups at Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Publication:
Kehlberger, A. et al.
Length Scale of the Spin Seebeck Effect
Physical Review Letters, 28 August 2015
DOI: 10.1103/PhysRevLett.115.096602
http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.096602

Further information:
Professor Mathias Kläui
Condensed Matter Theory Group
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.mainz.uni-mainz.de/ (MAINZ Graduate School of Excellence)

Weitere Informationen:

http://www.uni-mainz.de/presse/19572_ENG_HTML.php - press release
http://www.iph.uni-mainz.de/index_ENG.php - Institute of Physics at JGU
http://www.klaeui-lab.physik.uni-mainz.de/index.php - Kläui Lab at JGU
http://www.mainz.uni-mainz.de/ - MAINZ Graduate School of Excellence

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>