Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indications of the origin of the Spin Seebeck effect discovered

07.09.2015

Thermally excited magnetic waves enable generation of electricity using insulators

The recovery of waste heat in all kinds of processes poses one of the main challenges of our time to making established processes more energy-efficient and thus more environmentally friendly. The Spin Seebeck effect (SSE) is a novel, only rudimentarily understood effect, which allows for the conversion of a heat flux into electrical energy, even in electrically non-conducting materials.

A team of physicists at Johannes Gutenberg University Mainz (JGU), the University of Konstanz, the University of Kaiserslautern, and the Massachusetts Institute of Technology (MIT) have now succeeded in identifying the origin of the Spin Seebeck effect. By the specific investigation of the material- and temperature-dependence of the effect, the German and American researchers were able to show that it exhibits a characteristic length scale attributable to its magnetic origin.

This finding now allows for the advancement of this long-time controversial effect in terms of first applications. The resulting research paper was published in the scientific journal Physical Review Letters, with a fellow of the JGU-based Graduate School of Excellence "Materials Science in Mainz" (MAINZ) as first author.

The Spin Seebeck effect represents a so-called spin-thermoelectric effect, which enables the conversion of thermal energy into electrical energy. Contrary to conventional thermoelectric effects it also enables the recovery of heat energy in magnetic insulators in combination with a thin metallic layer.

Owing to this characteristic, it was assumed that the effect originates from thermally excited magnetic waves. The currently employed method of measurement, which makes use of a second metallic layer converting these magnetic waves into a measurable electrical signal, has so far not been able to allow for a distinct assignment of experimentally detected signals.

By measuring the effect for different material thicknesses in the range of a few nanometers up to several micrometers as well as for different temperatures, the scientists have found characteristic behavior. In thin films the signal amplitude increases with increasing material thickness and eventually saturates after exceeding a sufficient thickness.

In combination with the detected enhancement of this critical thickness at low temperatures, the agreement with the theoretical model of thermally excited magnetic waves developed at Konstanz could be demonstrated. With these results, the researchers were able for the first time to reveal a direct relation between the assumed thermally excited magnetic waves and the effect.

"This result provides us with an important building block of the puzzle of the comprehension of this new, complex effect, unambiguously demonstrating its existence," said Andreas Kehlberger, Ph.D. student at Johannes Gutenberg University Mainz and first author of the publication.

"I am very pleased that this exciting result emerged in a cooperation of a doctoral candidate out of my group at the Graduate School of Excellence 'Materials Science in Mainz' together with co-workers from Kaiserslautern and our colleagues from Konstanz, with whom we collaborate within the Priority Program 'Spin Caloric Transport' funded by the German Research Foundation (DFG)," emphasized Professor Mathias Kläui, director of the MAINZ Graduate School of Excellence based at Mainz University.

"It shows that complex research is only possible in teams, for instance with funding by the German Federal Ministry of Education and Research (BMBF) through the Mainz-MIT Seed Fund."

The MAINZ Graduate School of Excellence was originally approved as part of the Federal and State Excellence Initiative in 2007 and received a five-year funding extension in the second round in 2012 – a tremendous boost for the Mainz-based materials scientists and for the sponsorship of young researchers at JGU.

The MAINZ Graduate School consists of work groups at Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Publication:
Kehlberger, A. et al.
Length Scale of the Spin Seebeck Effect
Physical Review Letters, 28 August 2015
DOI: 10.1103/PhysRevLett.115.096602
http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.096602

Further information:
Professor Mathias Kläui
Condensed Matter Theory Group
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.mainz.uni-mainz.de/ (MAINZ Graduate School of Excellence)

Weitere Informationen:

http://www.uni-mainz.de/presse/19572_ENG_HTML.php - press release
http://www.iph.uni-mainz.de/index_ENG.php - Institute of Physics at JGU
http://www.klaeui-lab.physik.uni-mainz.de/index.php - Kläui Lab at JGU
http://www.mainz.uni-mainz.de/ - MAINZ Graduate School of Excellence

Petra Giegerich | idw - Informationsdienst Wissenschaft

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>