Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In borophene, boundaries are no barrier

17.07.2018

Rice U., Northwestern researchers make and test atom-thick boron's unique domains

Borophene, the atomically flat form of boron with unique properties, is even more interesting when different forms of the material mix and mingle, according to scientists at Rice and Northwestern universities.


Scanning tunneling electron microscope images of line defects in 1-to-6 and 1-to-5 borophene, indicated by blue and red arrowheads, respectively, show how the defects align in a way that preserves the synthetic material's metallic nature. Scientists at Rice and Northwestern universities made the first detailed analysis of ordered defect structures in borophene.

Credit: Hersam Research Group/Northwestern University

Usage Restrictions: For news reporting purposes only.

Scientists at the institutions made and analyzed borophene with different lattice arrangements and discovered how amenable the varied structures are to combining into new crystal-like forms. These, they indicated, have properties electronics manufacturers may wish to explore.

The research led by Rice materials theorist Boris Yakobson and Northwestern materials scientist Mark Hersam appears in Nature Materials.

Borophene differs from graphene and other 2D materials in an important way: It doesn't appear in nature. When graphene was discovered, it was famously yanked from a piece of graphite with Scotch tape. But semiconducting bulk boron doesn't have layers, so all borophene is synthetic.

Also unlike graphene, in which atoms connect to form chicken wire-like hexagons, borophene forms as linked triangles. Periodically, atoms go missing from the grid and leave hexagonal vacancies. The labs investigated forms of borophene with "hollow hexagon" concentrations of one per every five triangles and one per every six in the lattice.

These are the most common phases the Northwestern lab observed when it created borophene on a silver substrate through atomic boron deposition in an ultrahigh vacuum, according to the researchers, but "perfect" borophene arrays weren't the target of the study.

The lab found that at temperatures between 440 and 470 degrees Celsius (824-878 degrees Fahrenheit), both 1-to-5 and 1-to-6 phases grew simultaneously on the silver substrate, which acts as a template that guides the deposition of atoms into aligned phases. The labs' interest was heightened by what happened where these domains met. Unlike what they had observed in graphene, the atoms easily accommodated each other at the boundaries and adopted the structures of their neighbors.

These boundary adjustments gave rise to more exotic - but still metallic - forms of borophene, with ratios such as 4-to-21 and 7-to-36 appearing among the parallel phases.

"In graphene, these boundaries would be disordered structures, but in borophene the line defects, in effect, are a perfect structure for each other," said Rice graduate student Luqing Wang, who led a theoretical analysis of atom-level energies to explain the observations. "The intermixing between the phases is very different from what we see in other 2D materials."

"While we did expect some intermixing between the 1-to-5 and 1-to-6 phases, the seamless alignment and ordering into periodic structures was surprising," Hersam said. "In the two-dimensional limit, boron has proven to be an exceptionally rich and interesting materials system."

Wang's density functional theory calculations revealed the metallic nature of the line defects; this implied that unlike insulating defects in otherwise metallic graphene, they have minimal impact on the material's electronic properties at room temperature. At low temperature, the material shows evidence of a charge density wave, a highly ordered flow of electrons.

Theoretical calculations also suggested subtle differences in stiffness, thermal conductivity and electrochemical properties among borophene phases, which also suggested the material can be tuned for applications.

"The unique polymorphisms of borophene are on full display in this study," Yakobson said. "This suggests intriguing interplay in the material's electronic structure through charge density waves, which may lead to tantalizing switchable electronics."

"As an atomically thin material, borophene has properties that should be a function of the substrate, neighboring materials and surface chemistry," Hersam said. "We hope to gain further control over its properties through chemical functionalization and/or integration with other materials into heterostructures."

Yakobson and Hersam also co-authored a recent Nature Nanotechnology perspective about "the lightest 2D metal." In that piece, the authors suggested borophene may be ideal for flexible and transparent electronic interconnects, electrodes and displays. It could also be suitable for superconducting quantum interference devices and, when stacked, for hydrogen storage and battery applications.

###

Co-authors of the Nature Materials paper are graduate student Xiaolong Liu of Northwestern and Rice alumnus Zhuhua Zhang, now a professor at the Nanjing University of Aeronautics and Astronautics. Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry at Rice.

Zhang co-authored the Nature Nanotechnology paper with Northwestern and Argonne National Laboratory alumnus Andrew Mannix, now a postdoctoral fellow at the University of Chicago, and Argonne materials scientist Nathan Guisinger.

The research was supported by the Office of Naval Research, the National Science Foundation Materials Research Science and Engineering Center, the Army Research Office, the Robert Welch Foundation, the Department of Energy Office of Science, the State Key Laboratory of Mechanics and Control of Mechanical Structures at Nanjing University of Aeronautics and Astronautics and the Northwestern University International Institute for Nanotechnology.

Read the abstract at http://dx.doi.org/10.1038/s41563-018-0134-1.

This news release can be found online at http://news.rice.edu/2018/07/16/in-borophene-boundaries-are-no-barrier/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Borophene as a prototype for synthetic 2D materials development: https://www.nature.com/articles/s41565-018-0157-4

Long may you wave, borophene: http://news.rice.edu/2016/10/04/long-may-you-wave-borophene-2/

Boron atoms stretch out, gain new powers: http://news.rice.edu/2017/01/26/boron-atoms-stretch-out-gain-new-powers/

Borophene shines alone as 2D plasmonic material: http://news.rice.edu/2017/11/20/borophene-shines-alone-as-2-d-plasmonic-material-2/

Yakobson Research Group: https://biygroup.blogs.rice.edu

Hersam Research Group: http://www.hersam-group.northwestern.edu/hersam.html

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

David Ruth | EurekAlert!

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>