Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An impermeable wrap for future electronics

02.09.2011
A nanoparticle-infused film brings innovative lighting and display technologies closer to reality.

A moisture-resistant coating that extends the lifetime and reliability of plastic electronic devices, such as organic solar cells or flexible displays, has garnered the intense interest of developers of next-generation lighting materials.

By cranking out large sheets of polymers bearing electronic circuitry using roll-to-roll technology, electronics manufacturers can substantially reduce their capital and processing costs. The possibilities for low-cost flexible panel lighting inspiring, says Senthil Ramadas, co-founder and chief technology officer of Tera-Barrier Films¡ªa company spun-out of the A*STAR Institute of Materials Research and Engineering (IMRE) in 2009. ¡°Flexible devices can take any form¡ªthin films of organic lighting could cover entire ceilings or wrap around pillars.¡±

Despite their promise, however, flexible polymer-based electronics remain highly vulnerable to the elements, as water and oxygen molecules can easily seep into these plastic devices and degrade sensitive internal components. Current protection technologies involve the deposition of multiple layers of inorganic and organic films over the active substrate, but such ¡®stacks¡¯ of protection still allow permeation at a rate of one-thousandth of a gram per square meter per day¡ªthree orders of magnitude higher than an ¡®ideal¡¯ barrier, Ramadas explains.

In 1999, Ramadas and his colleagues at the IMRE spearheaded research into organic light-emitting diodes (OLEDs) and barrier substrates to protect them. They quickly discovered that sandwiching a polymer blend containing an innovative ingredient¡ªmetal oxide nanoparticles¡ªbetween two inorganic films greatly reduced the moisture intrusion rate to just one-millionth of a gram per square meter per day. These metal nanoparticles play a dual role by sealing pinholes and cracks in barrier films and at the same time reacting with and deactivating incoming water and oxygen molecules.

By adjusting the nanoparticle mix, the researchers also found that they could incorporate new functionalities into the plastic moisture barriers. Using this approach, the team have created a range of tailor-made products including ultraviolet light-blocking films, heat-extracting films and even a calcium-based integrated sensor that precisely measures moisture permeation. These innovations have been recognized by the granting of 50 patents for systems developed by the Tera-Barrier Films team.

The ability to provide individualized protection and encapsulation solutions to customers played a key role in the decision of Exploit Technologies, the commercialization arm of A*STAR, and Applied Ventures, a US-based investment firm, to finance and incubate the new start-up. A recent substantial investment by Japanese multinational KISCO promises to boost the company¡¯s projected revenues to $500 million in 2018 by spreading their proprietary technology throughout the critical Asia-Pacific manufacturing region.

KISCO has worked closely with the researchers since 2003, marketing the nanotechnology-based films and distributing samples throughout Japan, Korea, China and Taiwan. KISCO¡¯s latest investment promises to enable immediate delivery of Tera-Barrier Films¡¯ unique products to clients for testing, validation and eventual implementation into product lines, according to CEO Mark Auch.

¡°KISCO has linked a lot of customers to us¡ªit¡¯s a strategic partnership,¡± says Auch. ¡°They see a very big potential for solar cells and OLED devices in the Asia-Pacific region, and it¡¯s a large market.¡±

In addition to these applications, Tera-Barrier Films¡¯ products have potential for use in food and medical packaging¡ªpositioning the company to achieve high profitability once mass-production begins in the next few years.

About Tera©Barrier Films

Tera-Barrier Films Pte. Ltd was jointly founded by Senthil Ramadas and Mark Auch with the support of Exploit Technologies, the strategic marketing and commercialization arm of A*STAR. Tera-Barrier Films is a spin-off company from A*STAR¡¯s Institute of Materials Research and Engineering.

About Applied Ventures

Applied Ventures LLC, a subsidiary of Applied Materials Inc., invests in early stage technology companies with high growth potential that provide a window on technologies that advance or complement Applied Materials¡¯ core expertise in nanomanufacturing technology.

About the Institute of Materials Research and Engineering

The Institute of Materials Research and Engineering (IMRE) was established in 1997 with the aim of becoming a leading research institute for materials science and engineering. The IMRE has developed strong capabilities in materials analysis, characterization, materials growth, patterning, fabrication, synthesis and integration, and has established reseach and development program in collaboration with industry partners.

Eugene Low | Research asia research news
Further information:
http://www.research.a-star.edu.sg/feature-and-innovation/6383
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>