Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the complex growth process of strontium titanate thin films

16.04.2014

Researchers at Japan's National Institute for Materials Science (NIMS) and Advanced Institute for Materials Research (AIMR) have achieved the first successful atomic-level observation of growing strontium titanate thin films.

Led by Assistant Professor Takeo Ohsawa of NIMS and Associate Professor Taro Hitosugi of Tohoku University's AIMR, a research team has developed a new advanced system, combining a super-resolution microscope and a deposition chamber for growing oxide thin films.


(Left) Scanning tunneling microscopy image of 0.3 unit-cell SrTiO3 thin film (15 nm × 15 nm). Atomic arrangement is clearly observed to be identical between the SrTiO3 thin film (purple) and the SrTiO3 substrate underneath (blue). (Right) A growth model illustrating the formation of SrTiO3 thin film. The TiO2 layer present on the surface of the SrTiO2 substrate is transferred to the surface of the thin film.

Copyright : National Institute for Materials Science (NIMS)

With this system, they successfully observed for the first time the growing metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate (SrTiO3). Based on these observations, they identified the mechanism involved in the growth of the thin films in which titanium atoms rose to the surface of the film.

Metal oxides, including perovskite-type oxides such as SrTiO3, are commonly used due to their diverse properties, which include superconductivity, ferromagnetism, ferroelectricity and catalytic effect.

In recent years, novel properties generated at the interface between two dissimilar oxides have been vigorously investigated. However, little is known about the mechanism involved in the formation of such interfaces. Understanding this mechanism is key to further research advances in this field.

The NIMS/AIMR research group developed an innovative system that combines a scanning tunneling microscope capable of identifying individual atoms with a pulsed laser deposition method that enables the growth of high-quality thin films.

In addition, they also established a method for preparing a single-crystal SrTiO3 substrate on which atoms are arranged in a periodic pattern. Epitaxial thin films were grown on the surface of the substrates and the growth was observed with atomic-scale spatial resolution. In their observations, they found there was a great difference in the growth process when SrTiO3 and SrOx thin films were deposited on the surface of the substrates.

Furthermore, the team identified a phenomenon in which excess titanium atoms present on the surface of the SrTiO3 substrate rose to the surface of the thin film. These observations facilitated a clear atomic-scale understanding of the growth process regarding how oxide thin films are formed.

These results may not only contribute to the understanding of the origin of interfacial properties but also lead to the creation of new electronics devices through the development of new functional materials.

This research was carried out as part of the Japan Science and Technology Agency’s Strategic Basic Research Programs. The research will be published in the U.S.-based scientific journal, ACS Nano, in the near future.

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: NIMS SrTiO3 chamber developed mechanism observations periodic properties substrates titanium

More articles from Materials Sciences:

nachricht Using fine-tuning for record-breaking performance
14.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>