Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Spiders Spin Silk

06.08.2014

Spider silk is an impressive material: Light weight and stretchy yet stronger than steel. Silk proteins, called spidroins, rapidly convert from a soluble form to solid fibers at ambient temperatures and with water as solvent. How the spiders regulate this process is to a large extent unknown.

Now, Anna Rising and Jan Johansson at the Swedish University of Agricultural Sciences (SLU) and Karolinska Institutet show how the silk formation process is regulated. The work was done in collaboration with colleagues in Latvia, China and USA.

Spidroins are big proteins of up to 3,500 amino acids that contain mostly repetitive sequences. The non-repetitive N- and C-terminal domains at opposite ends are thought to regulate conversion to silk. These terminal domains are unique to spider silk and are highly conserved among spiders.

Spidroins have a helical and unordered structure when stored as soluble proteins in silk glands, but when converted to silk they contain β-sheets that confer mechanical stability. We know that there is a pH gradient across the spider silk gland, which narrows from a tail to a sac to a slender duct, and that silk forms at a precise site in the duct. But further details of spider silk production have been elusive. 

By using ion-selective microelectrodes to measure the pH of the glands we could show that the pH fall from 7.6 to 5.7 between the beginning of the tail and half-way down the duct. This pH gradient is much steeper than previously thought.

The microelectrodes also showed that bicarbonate ions and carbon dioxide pressure simultaneously rise along the gland. Taken together, these patterns suggested that the pH gradient is due to carbonic anhydrase, an enzyme that converts carbon dioxide and water to bicarbonate and hydrogen ions. We used a histological method, developed at SLU, to identify active carbonic anhydrase in the distal part of the gland. Carbonic anhydrase is responsible for generating the pH gradient since an inhibitor called methazolamide collapsed the pH gradient.

We also found that pH had opposite effects on the two domains' stability, which was a surprise given that the domains had been suggested to have a similar impact on silk formation. The N-terminal dimerized at pH 6 (i.e. in the beginning of the duct) and became increasingly stable as the pH dropped along the duct.

In contrast, the C-terminal domain destabilized as the pH dropped, gradually unfolding until it formed the β-sheets characteristic of silk at pH 5.5. These findings show that both terminals undergo structural changes at the pH found in the beginning of the duct. Importantly, this is also where carbonic anhydrase activity is concentrated.

These findings led us to propose a new "lock and trigger" model for spider silk formation. Gradual dimerization of the N-terminal domains lock spidroins into multimers, while the β-sheet fibrils at the C-terminals could serve as nuclei that trigger rapid polymerization of spidroins into fibers. Interestingly, the C-terminal β-sheets are similar to those in the amyloid fibrils characteristic of diseases such as Alzheimer's disease. This mechanism elegantly explains how spider silk

can form so quickly as well as how its formation can be confined to the spinning duct. Besides being essential to producing biomimetic spidroin fibers, knowing how spiders spin silk could give insights into natural ways of hindering the amyloid fibrils associated with disease.

Contact:

Anna Rising, Researcher SLU and KI, ph +46-70 974 48 88 anna.rising@ki.se

Jan Johansson, Professor, SLU and KI, +46-70-34 570 48

The article: http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001921

SLU:s vision: SLU är ett universitet i världsklass inom livs- och miljövetenskaper.

David Stephansson | www.mynewsdesk.com
Further information:
http://www.slu.se

Further reports about: C-terminal SLU Spin bicarbonate characteristic dioxide fibers fibrils microelectrodes proteins silk

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>