Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How magnetic fields can fix crystal twinning


Special coupling of magnetic moments in high-temperature superconductors allows to reorient crystalline domains leading to “perfect” single crystals.

In many cases, it is important to be able to take measurements along different directions in the crystal lattice in order to study the physical properties of new materials, such as high-temperature superconductors. However, this requires single crystals without so-called twin domains, i.e., without any internal twists.

Graphical representation of the magnetic interactions relevant to magnetic detwinning in EuFe₂As₂. Essential is the bi-quadratic coupling between Fe and Eu indicated by blue-red arrows.

© Universität Augsburg/IfP/EKM

Iron pnictide superconductors, which are currently being studied intensively, show twin domains, which until now could only be avoided by application of high pressure. This is technically challenging to implement and limits the possibilities of investigation. Recently, a major breakthrough has been achieved: in iron pnictide superconductors with large europium moments, twin domains can be reoriented by small magnetic fields to achieve a mono-domain and fully detwinned single crystal.

This surprising and novel effect is based, as has now been elucidated by physicists at the University of Augsburg and the Naval Research Laboratory in Washington (USA), on a special magnetic interaction between the magnetic moments of europium and iron.

Most parent compounds of modern high-temperature superconductors, the so-called iron pnictides, feature a phase transition in which the crystal structure distorts within the tetragonal ab-plane. This distortion leads to the formation of micrometer-sized twin domains, which obscure the in-plane anisotropies of important physical properties.

Three years ago, physicists from the Universities of Augsburg, Göttingen, Stuttgart, and San Diego discovered a remarkable effect in EuFe₂As₂. The application of small magnetic fields leads to a reorientation of the twin domain walls at low temperatures, leaving the crystal fully detwinned. It is even possible to switch back and forth between different crystal orientations several times by further increasing the magnetic field.

This effect allows for a better investigation of the directional dependence of the physical properties, which is considered crucial for the understanding of high-temperature superconductivity. However, a necessary and physically meaningful explanation of this effect was so far missing.

Two experimental physicists at the University of Augsburg in cooperation with a theoretical physicist from the US have now published a comprehensive quantitative description of this very unusual coupling between the crystal lattice and the applied magnetic field in the journal Physical Review X.

The compound EuFe₂As₂ has two types of magnetic moments, which originate from strongly localized 4f orbitals of the europium atoms as well as from predominantly delocalized 3d orbitals of the iron atoms. Since iron pnictides without europium moments show no comparable behavior, it is clear that the latter play an important role. Their coupling to the crystal lattice, however, is much too weak to explain the experimental observations.

The crucial point in the theoretical description was, therefore, the modeling of the interaction between the europium and iron moments. Due to the symmetrical arrangement of the moments in the crystal lattice, the typical, so-called linear Heisenberg coupling is ineligible.

By introducing a minuscule biquadratic coupling between the Eu and Fe magnetic moments, which tries to make the two as parallel as possible, all observations are quantitatively described. This is remarkable, as the interaction strength is several orders of magnitude smaller than typical electron and lattice energies.

In addition to the description of the previous experimental observations, the theory published in the journal Physical Review X also predicts further abrupt changes in the crystal orientation in EuFe₂As₂ for very high magnetic fields. First signs of this have already been observed. In general, field-induced detwinning enables a number of new investigation methods to study the directional-dependent properties of high-temperature superconductors. This opens up new possibilities to gain an improved understanding of these fascinating materials.

Jannis Maiwald, I.I. Mazin, and Philipp Gegenwart, Microscopic Theory of Magnetic Detwinning in Iron-Based Superconductors with Large-Spin Rare Earths, Physical Review X, 8, 011011 (2018),

Weitere Informationen:

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>