Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How effective are bonding agents? Fraunhofer uses liquid chromatography for characterization

24.10.2017

Functionalized polyolefins are of great economic importance as bonding agents between polyolefins and polar surfaces. Despite years of effort, up to now there has never been any analytic method that could provide a comprehensive understanding of these materials to enable their effectiveness to be quickly assessed, for instance as part of incoming goods controlling. Now, a chromatographic method developed at the Fraunhofer Institute for Structural Durability and System Reliability LBF makes it possible to develop systematic structure-property relationships for these materials for the first time.

This is very useful for the development of more efficient functionalization processes. In addition, this analytic information is highly relevant for material development and for understanding material failure.


Device for separating polyolefins using 2-dimensional high temperature liquid chromatography.

Photo: Fraunhofer LBF


Getting to know materials in detail: Fraunhofer LBF has researched the systematic structure-property relationships for functionalized polyolefins.

Photo: Fraunhofer LBF

Due to their properties, which can be broadly adjusted, and because they are manufactured from inexpensive raw materials, polyolefins are the most frequently used synthetic polymers. However, their low surface energy, poor compatibility with polar polymers, and low adhesion to polar materials do represent limits to how they are used.

Many of these problems can be solved by introducing polar functions, for instance through grafting them with appropriate polar monomers. The molar mass distribution (MMD) and chemical composition distribution (CCD) then determine the application characteristics for a given total composition.

Previously established methods could not be used to determine the distribution of the chemical composition. That is why scientists at the Fraunhofer Institute developed a fast and selective method for characterizing functionalized polyolefins with an approach based on high performance liquid chromatography (HPLC). This allowed them to separate functionalized polyolefins, such as polypropylene-grafted maleic anhydride (PP-g-MA) into polar and non-polar fractions.

This allows them to quickly and easily identify the fraction of the sample active as a bonding agent (functionalized), and then determine the effectiveness of the grafting process. The scientists further developed the HPLC approach to obtain information on the degree of functionalization of polymer chains of different lengths (different molar mass), i.e. the relationship between MMD and CCD. Combining HPLC with gel permeation chromatography (GPC) made it possible to separate PP-g-MA samples based on their chemical composition and then on their molar mass.

First, this method made it possible to determine the actual active content of functionalized polypropylene in a quantitative way for the first time. Second, it could be used to show that the functionalized material had a lower molar mass than the non-functionalized fraction.

About Fraunhofer LBF’s plastics research Division

Fraunhofer LBF’s plastics research division, which evolved out of the German Plastics Institute [Deutsches Kunststoff-Institut DKI], provides its customers with advice and support along the entire added value chain from polymer synthesis to the material, its processing and product design through to the qualification and verification of complex safety-critical lightweight construction systems. The research division specializes in the management of complete development processes and advises its customers at all stages of development. High-performance thermoplastics and compounds, duromers, duromer composites and duromer compounds as well as thermoplastic elastomers play a key role. The plastics division is an identified skills center for questions regarding additivation, formulation and hybrids. It has extensive expertise in analyzing and characterizing plastics and the changes in their properties during processing and in use, and also in developing methods for time-resolved processes.

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Further information:
http://www.lbf.fraunhofer.de

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>