Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Homegrown Solution for Synchrotron Light Source

02.07.2015

Ames Laboratory physicist develops new technique to study electronic properties

It’s often said that necessity is the mother of invention. Such was the case for Ames Laboratory physicist Adam Kaminski who took the research challenge he was facing and turned it into a new solution that will help advance his research.


Advances in angle-resolved photoemission spectroscopy (ARPES) help scientists at the U.S. Department of Energy's Ames Laboratory study electronic properties of new materials.

Two years ago the National Science Foundation closed the synchrotron in Stoughton, Wisc. More recently, Brookhaven National Lab closed its synchrotron light source to make way for a more advanced and powerful facility. Concerned that this would leave him without the low-energy light source he needed to study the electronic properties of new materials, he improvised, and the result was the development of a new technique that provides a home-grown, laboratory-based solution.

Kaminski uses a technique called angle-resolved photoemission spectroscopy (ARPES) in which light energy (photons) is directed at a sample being studied. The photons cause electrons in the sample to be emitted into a vacuum. An electron analyzer measures the energy and momentum of these electrons, providing details about the electron properties within the material.

Besides using synchrotron beam lines, lasers can provide the input energy needed, but there were problems with the existing technology. High-energy, tunable lasers offered variable phonon energy, but lacked the resolution necessary for good results. Low-energy lasers provided excellent resolution but the fixed photon energy limited their usefulness.

So Kaminski, who admittedly knew little about lasers, set about finding a way to make a low-energy laser that was tunable. In searching the literature, he found that such a tunable laser had been suggested, but had never been used in ARPES systems. The laser used a potassium beryllium fluoroborate (KBBF) crystal to quadruple the frequency of infrared laser converting photons to the required “vacuum ultra-violet (UV)” range.

Obtaining such a crystal wasn’t easy. Kaminski found that the main source for the KBBF crystals, China, had embargoed their export. However, he found a research group at Clemson University that was able to grow him the crystal he needed. He was also able to obtain funding through the DOE Office of Science to build the new system. As an added bonus, the crystal growth and preparation was commercialized by Advanced Photonic Crystals, LLC. This will make them available in U.S. for applications such as UV photo lithography, spectral analysis and defense.

In simple terms, Kaminski’s system uses a pair of lasers, with the first acting as a pump for the second one. The resulting beam consists of very short pulses (one quadrillionth of a second) and very high (400 kW) peak power and is directed into a vacuum chamber that contains lenses, mirrors and the above mentioned “magic” crystal. This process quadruples the energy of the photons. By tuning the wavelength of the second laser and rotating the crystal, one can then tune the energy of the produced UV photons. The beam is then focused at the sample in an ultra-high vacuum chamber and a connected electron analyzer measures the electrons emitted from the sample.

“Development of a laboratory-based solution was really important,” Kaminski said. “Our beam is smaller, photon flux is higher by one or two orders of magnitude, and energy resolution is better by a factor of 5.”

For certain experiments, such as Kaminski’s, that can translate into significantly better data. As illustrated by the graphs (directional), synchrotron results of magnesium diboride show a surface band that curves relatively smoothly. Results from the tunable laser ARPES shows a dramatically enhanced plot with a sharp peak and a slight dip before leveling off.

“Our system has significant advantages,” Kaminski said. “It offers much higher resolution. When a researcher has a sample they want tested, we can usually do it the next day. ”

Kaminski has performed ARPES measurements for a number of research groups at Ames Laboratory as well as researchers at Sandia National Laboratory and Princeton.

“It’s great to have the capability to perform measurements right here in the Lab,” he said, “and it’s busy 24/7!”

This work was supported by the DOE Office of Science.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information
Breehan Gerleman Lucchesi
Communications specialist
breehan@ameslab.gov
Phone: 515-294-9750

Breehan Gerleman Lucchesi | newswise

Further reports about: ARPES Electrons Synchrotron basic research lasers light source measurements photons

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>