Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hohenstein researchers improve functional sportswear

06.07.2010
Tests show the wide range of thermo-physiological properties in sports textiles

German manufacturers of sports textiles are among the most innovative companies in the textile industry. Researchers at the Hohenstein Institute in Bönnigheim are helping these companies to improve the functional properties of their textiles by developing practical construction guidelines.


One of the ways of assessing the comfort characteristics of sportswear and other textiles at the Hohenstein Institute is by using the thermo-regulatory articulated manikin Charlie.


The physiological comfort characteristics of sports textiles can be represented using the German school marks system from 1 (= \"very good\") to 6 (= \"unsatisfactory\").

In a recently completed research project: (AiF No. 15481 N), with funding from the Federal Ministry of Economics and Technology (BMWi) provided through the Federation of Industrial Research Associations (AIF), they drew specific conclusions about the physiological comfort characteristics of a variety of different types of knitted garments. The textile industry will be able to use the construction guidelines that resulted from the research work to continue developing and optimising functional clothing for all kinds of different sports.

The research project entailed investigating a total of 34 assorted knitted fabrics in respect of their thermo-physiological characteristics. These samples varied in terms of their fibres (PES, PP, PA, WO and CO and some mixed fibres), weight per unit area (100 to 329g), surface finish (hydrophilic, bioactive) and knit structure(e.g. single-jersey or pique). Specially selected representative samples were tested in controlled trials involving volunteers wearing them in a climate-controlled room. The skin model was used to measure thermo-physiological properties, i.e. how heat and moisture are transported through the textile. When this data was combined with the results of skin sensory testing, it was possible to work out a comfort rating for each sample. The textiles were assessed along the lines of the German school marks system, from 1 = "very good" to 6 = "unsatisfactory".

On average, all the knitted sports textiles that were investigated received marks that were satisfactory or better for sports textile comfort (TK(S)). Nine samples were awarded marks of 1.0 to 1.5 (= "very good"). Chemical fibres were at a distinct advantage when it came to transporting liquid perspiration and the way they dried. On the other hand, the natural fibre samples made of wool and cotton had the edge when it came to retaining perspiration. Comparing pairs of samples of textiles where the main fibre was polyamide, but with and without a hydrophilic finish, showed that the hydrophilic finish had a negative effect on the level of comfort, because the fabric took longer to dry. However, applying a hydrophilic finish to samples made of propylene or a mixture of cotton and polypropylene gave a better result for comfort because they did not stick to the skin so much.

Contact:
Hohenstein Institute
Martin Harnisch
m.harnisch@hohenstein.de
We are grateful to the Research Association of the Textile Research Council for its financial support for IGF project no. 15481 N, which was provided using funds from the Federal Ministry of Economics and Technology (BMWi) via the Federation of Industrial Research Associations AIF as part of the programme to support "Industrial Community Research and Development" (IGF).

We must also thank all members of the project support committee who, with their specialist expertise and willingness to contribute to the discussions, helped ensure a successful conclusion to the project.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-791-2010

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>