Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Infrared Helps Hyde Group to Develop Composites Manufacturing Technology

28.11.2011
An infrared heating system from Heraeus Noblelight is helping the Hyde Group of Stockport to develop composites manufacturing techniques to advance the application of composite structures in the aircraft of the future.

Composite materials are being increasingly specified in aircraft structures and components, with Boeing’s 787 Dreamliner currently featuring composites structures for over 50% of its structure, including the fuselage. This allows dramatic savings in weight allowing corresponding improvements in fuel economy.


Infrared emitters heat composites prior to forming and can be precisely controlled. Copyright Heraeus Noblelight 2011

The Hyde Group was founded in 1968 and is a leading global company with many years of experience of project management, design, production and support aspects of aircraft tooling. The scope of its tooling capabilities ranges from automated assembly systems, including robotic integration, bespoke machine tool design and manufacture, major assembly jigs, sub-assembly and all facets of detail tool manufacture from simple rubber and fluid press tooling to sophisticated lay-up tools and super plastic form tools.

It carries out extensive research and development projects and programmes for aircraft manufacturers and one such project involves the forming of multi-ply, pre-preg composites. Multi-ply composite assemblies are rigid by nature and, consequently, they must be softened if they are to be formed into specified profiles on moulding tools before curing in autoclaves. Hyde’s project engineers investigated various heating techniques to achieve the required softening of the multi-ply assemblies. The softening process was first investigated using hot air guns but warm air ovens were rejected as a solution because of their space requirement and oil-heated mould tools were considered to be potentially contaminating in a process which demands extreme cleanliness.

Eventually, after successful tests at Heraeus’s Neston Applications Centre, it was decided to use a fast-response, medium wave infrared heating system. This is installed in a robotic cell and the multi-ply assembly is located in front of the 6 kW infrared emitter by two robots, heated to around 70ºC until it is suitably pliable and then laid on the moulding tool, where specially designed rollers ensure that it follows the tool profile.

“We had used infrared previously to assist in glueing processes,” explains project engineer, Matt Garner. “We have been very pleased with their precise controllability and compactness in this new important project.”

Process Improvement by Exact Matching

Infrared heating technology offers various possibilities to optimize industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by selecting optimum wavelengths
• Spatially focused application of energy by matching the heating to the product shape

• Fast response times to reduce energy consumption

Consequently, infrared heat is always used when heat processes are to be implemented which require particular targets in terms of space, time or quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Germany
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>