Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Infrared Helps Hyde Group to Develop Composites Manufacturing Technology

28.11.2011
An infrared heating system from Heraeus Noblelight is helping the Hyde Group of Stockport to develop composites manufacturing techniques to advance the application of composite structures in the aircraft of the future.

Composite materials are being increasingly specified in aircraft structures and components, with Boeing’s 787 Dreamliner currently featuring composites structures for over 50% of its structure, including the fuselage. This allows dramatic savings in weight allowing corresponding improvements in fuel economy.


Infrared emitters heat composites prior to forming and can be precisely controlled. Copyright Heraeus Noblelight 2011

The Hyde Group was founded in 1968 and is a leading global company with many years of experience of project management, design, production and support aspects of aircraft tooling. The scope of its tooling capabilities ranges from automated assembly systems, including robotic integration, bespoke machine tool design and manufacture, major assembly jigs, sub-assembly and all facets of detail tool manufacture from simple rubber and fluid press tooling to sophisticated lay-up tools and super plastic form tools.

It carries out extensive research and development projects and programmes for aircraft manufacturers and one such project involves the forming of multi-ply, pre-preg composites. Multi-ply composite assemblies are rigid by nature and, consequently, they must be softened if they are to be formed into specified profiles on moulding tools before curing in autoclaves. Hyde’s project engineers investigated various heating techniques to achieve the required softening of the multi-ply assemblies. The softening process was first investigated using hot air guns but warm air ovens were rejected as a solution because of their space requirement and oil-heated mould tools were considered to be potentially contaminating in a process which demands extreme cleanliness.

Eventually, after successful tests at Heraeus’s Neston Applications Centre, it was decided to use a fast-response, medium wave infrared heating system. This is installed in a robotic cell and the multi-ply assembly is located in front of the 6 kW infrared emitter by two robots, heated to around 70ºC until it is suitably pliable and then laid on the moulding tool, where specially designed rollers ensure that it follows the tool profile.

“We had used infrared previously to assist in glueing processes,” explains project engineer, Matt Garner. “We have been very pleased with their precise controllability and compactness in this new important project.”

Process Improvement by Exact Matching

Infrared heating technology offers various possibilities to optimize industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by selecting optimum wavelengths
• Spatially focused application of energy by matching the heating to the product shape

• Fast response times to reduce energy consumption

Consequently, infrared heat is always used when heat processes are to be implemented which require particular targets in terms of space, time or quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Germany
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Materials Sciences:

nachricht Shock-dissipating fractal cubes could forge high-tech armor
08.07.2020 | DOE/Los Alamos National Laboratory

nachricht Atomic 'Swiss army knife' precisely measures materials for quantum computers
08.07.2020 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>