Heraeus Infrared Helps Hyde Group to Develop Composites Manufacturing Technology

Infrared emitters heat composites prior to forming and can be precisely controlled. Copyright Heraeus Noblelight 2011<br>

Composite materials are being increasingly specified in aircraft structures and components, with Boeing’s 787 Dreamliner currently featuring composites structures for over 50% of its structure, including the fuselage. This allows dramatic savings in weight allowing corresponding improvements in fuel economy.

The Hyde Group was founded in 1968 and is a leading global company with many years of experience of project management, design, production and support aspects of aircraft tooling. The scope of its tooling capabilities ranges from automated assembly systems, including robotic integration, bespoke machine tool design and manufacture, major assembly jigs, sub-assembly and all facets of detail tool manufacture from simple rubber and fluid press tooling to sophisticated lay-up tools and super plastic form tools.

It carries out extensive research and development projects and programmes for aircraft manufacturers and one such project involves the forming of multi-ply, pre-preg composites. Multi-ply composite assemblies are rigid by nature and, consequently, they must be softened if they are to be formed into specified profiles on moulding tools before curing in autoclaves. Hyde’s project engineers investigated various heating techniques to achieve the required softening of the multi-ply assemblies. The softening process was first investigated using hot air guns but warm air ovens were rejected as a solution because of their space requirement and oil-heated mould tools were considered to be potentially contaminating in a process which demands extreme cleanliness.

Eventually, after successful tests at Heraeus’s Neston Applications Centre, it was decided to use a fast-response, medium wave infrared heating system. This is installed in a robotic cell and the multi-ply assembly is located in front of the 6 kW infrared emitter by two robots, heated to around 70ºC until it is suitably pliable and then laid on the moulding tool, where specially designed rollers ensure that it follows the tool profile.

“We had used infrared previously to assist in glueing processes,” explains project engineer, Matt Garner. “We have been very pleased with their precise controllability and compactness in this new important project.”

Process Improvement by Exact Matching

Infrared heating technology offers various possibilities to optimize industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by selecting optimum wavelengths
• Spatially focused application of energy by matching the heating to the product shape

• Fast response times to reduce energy consumption

Consequently, infrared heat is always used when heat processes are to be implemented which require particular targets in terms of space, time or quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Germany
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Media Contact

Dr. Marie-Luise Bopp Heraeus Noblelight GmbH

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors